What causes heart disease part XXXVII (Part thirty-seven)

16th September 2017

Beginning at the end.

Whilst there is significant controversy about how atherosclerotic plaques may start, and grow, the final event in cardiovascular disease is, in most cases, pretty much accepted – even by me. The formation of a blood clot. Yes, there are many caveats here, and also a number of different processes that can occur, but I am not covering them in this blog. I am using the simple ending. The obstructive blood clot.

If a blood clot forms in the coronary arteries – blood vessels supplying blood to the heart – it can fully block the artery, jam up blood flow, vastly reduce oxygen supply, and cause a myocardial infarction (MI). The clot usually forms on the surface of a pre-existing atherosclerotic plaque.

If a blood clot forms in the carotid arteries – main blood vessels supplying blood to the brain – it can then break off, travel up into the brain where it gets stuck, jams up blood flow, reduces oxygen supply, and cause a cerebral infarction (ischaemic stroke). Again, blood clots in the carotid arteries almost always form on the surface of atherosclerotic plaques formed earlier.

What this means is that reducing the formation of blood clots will, or definitely should, reduce the risk of heart attacks and strokes. And, of course, it does. Aspirin, for example, has anticoagulant action, and it lowers the risk of CVD, although not by a huge amount.

However, recently, a study was published in the New England Journal of Medicine which demonstrated that if you add rivaroxaban – an anticoagulant, primarily used to prevent strokes in patients with Atrial Fibrillation – to aspirin, this further reduces the risk of CVD1.

The trial was reported thus, in the Daily Mail on the 11th of September:

‘Phenomenal’ pill slashes the risk of death from heart disease by 22% and could save millions of lives, ‘ground-breaking’ trial finds.’

Oh yes, we do like a phenomenal pill, do we not. Mockery of such ridiculous hype aside, this was an impressive result. Far more impressive than any statin trial, it must be added – with no impact on LDL levels at all. Only one slight problem, it would be rather expensive to add rivaroxaban to everyone taking aspirin. Minimum cost, about £6Bn/years ($8Bn/year) in the UK alone.

Of course, there are other things that can reduce the risk of blood clotting. Omega 3 fatty acids, for example which reduce ability of platelets to stick together2 – an action almost identical to aspirin. Then there is Von Willibrand disease – a condition where people lack a key blood clotting element called the Von Willebrand factor. Patients with this condition have a 60% reduction in the risk CVD.

Those with haemophilia had – prior to the development of clotting factors to replace those that were missing –around 20% the risk of CVD of the surrounding population.

On the other hand, there are situations where the risk of blood clotting increases. Use of non-steroidal drugs e.g. brufen, naproxen, diclofenac etc. These increase the risk of clotting, and CVD. There are conditions, such as Hughes syndrome and Factor V Leiden where the risk of blood clotting goes up, and so does the risk of CVD and so on, and so forth.

In fact, I think it can be stated with complete confidence that any drug, condition, or anything else that reduces the risk of blood clotting, also reduces the risk of CVD, and vice-versa. Of course, if you reduce the risk of blood clotting, you can also increase the risk of serious bleeding. So, it is not all positive. All is balance. Yin and Yang, and suchlike. Even the relatively benign aspirin, in low doses, can lead to chronic blood loss, anaemia, and, in extreme cases, death.

What does this prove. Well it certainly proves that blood clotting and CVD are intimately related. So much so that the word ‘atherothrombosis’ is often used to describe the processes of CVD. ‘Athero-‘ = the atherosclerotic plaque growing then ‘-thrombosis’, the clot that forms top of the plaque that then kills you. That, at least, is the official Soviet party line.

However, I never liked the idea that we have two almost completely different processes going, that are linked together, but only at the final event. I wanted to explore the idea that a single process – blood clotting – could be responsible for plaque starting, growing and then ‘rupturing’ causing the whole spectrum of atherothrombosis. Blood clots, from start to finish.

This took me on a pretty amazing journey, a long and winding route indeed. I have come to believe that the system of blood coagulation must be, just about, the most complex physiological system in the body. It is beyond mind-boggling. Just when you think you have read about every factor involved, another one pops up. Indeed, I think I am forgetting facts about blood clotting faster than I can learn them. My brain is full.

However, the other day, I came across an expression that captured something about blood clotting that I have always struggled to put into words. It described the coagulation system as ‘idling’, as in sitting with the engine running. The blood coagulation system is never ‘off’ it is always turning over in the background, constantly producing small combination of substances that make up a full blood clot.

I suppose this is because, if you suffer a significant wound, or damage to a large blood vessel, the coagulation system cannot hang about. It must accelerate from zero to one hundred in the blink of an eye. Bang, go, stamp on the accelerator. At the same time, if it accelerates out of control, the clot will be too big, it will spread too rapidly, blocking blood vessels all over the place.

So, almost the moment you stamp on the accelerator, you are hammering on the brake. Accelerate, brake, accelerate, brake. Build up the clot, break down the clot. A fantastically dynamic system with feedback loop upon feedback loop. Too little clotting, you die. Too much clotting, you die. This is going on, all the time, in your body. A system constantly hunting, and hunting, to find equilibrium.

What is the greatest, the most powerful trigger, for a clot to form? It is a substance called Tissue Factor (TF). It is found almost everywhere in the body, but it is found in the highest concentrations within the walls of the larger arteries and veins. This, of course, makes perfect sense. If an artery, or vein, is damaged, the place you want a blood clot to form is exactly at that point. Bang, go.

Tissue factor is sometimes called extrinsic factor. It is called this because it does not float about (freely) in the bloodstream, it sits ‘externally/extrinsically’ to the blood. [In fact, platelets and white blood cells also contain TF, but it is inactive/not expressed unless other things are triggered first].

Other parts of the clotting system are often referred to as intrinsic factors that trigger the ‘intrinsic clotting system’. Factors you may have heard of, such as factor VIII, or factors IX and X and Xa etc. The intrinsic system tends to operate more slowly, and less powerfully, than the extrinsic (massive over-simplification warning).

Normally, the ‘intrinsic’ clotting factors, and the extrinsic system operate together to drive and amplify the clotting response once it is triggered. All of which means that, normally, you want to keep the blood well away from contact with TF, because the moment there is contact, all hell breaks loose and a blood clot will form, instantly, at that point.

The single most important barrier that keeps the blood separated from TF is the endothelium. Which means that an intact and healthy endothelium is the best protection against accidental blood clots forming. Yes, blood clots can form with no TF contact. A deep vein thrombosis (DVT) can develop in veins with intact endothelium. The process is different, the blood clot formed is also very different. It is mainly an intrinsic process.

Forgetting other types of blood clot that can form elsewhere in the body, the only way a clot will form in the larger arteries is due to endothelial damage. No endothelial damage, no clot. Once a blood clot has formed, then stabilised, what happens?

Well, normally the clot will not have been allowed to get too big, because all the feedback loops will kick into action to slow things down. So, most clots will not fully block an artery, nor even half block an artery. They also get shaved down in size quickly. Primarily through the action of Tissue Plasminogen Activator (TP(a)).

TP(a) is an enzyme floating about in the bloodstream that converts plasminogen into plasmin. Plasminogen is an inactive enzyme that is incorporated into all blood clots as they form. When TP(a) converts plasminogen to plasmin, it slices fibrin apart, chopping blood clots into small pieces. A process known as fibrinolysis. Two of the major components of a blood clot are platelets – small sticky cells that coordinate the clotting response – and fibrin – long sticky strands of protein that binds the clot together.

However, there will be always be a part of the clot that remains clamped to the artery wall. Because if all the clot was fully broken down/fibrinolysed, the bloodstream would be exposed to TF again, and the entire blood clotting process would simply kick off…. again.

Which means that once a clot has been formed, a part of it will always be left stuck to the artery wall. This then needs to be got rid of. How does this happen? Well, it is not like scratching your skin, whereby a clot (scab) forms, the endothelium re-grows underneath it, then the scab falls to the ground. If this were the process that happened in an artery, where do you think that clot would go? Down the artery, to get stuck where it narrows, to cause an infarction. Not a very good design feature, I would argue.

So, what happens is something far cleverer. A replacement endothelial layer is created from Endothelial Progenitor Cells (EPCs). These are synthesized in the bone marrow, and float about in the bloodstream. Chemicals released, when endothelium is damaged, attract EPCs to the area of damage/blood clot.

Once they arrive they stick to the surface of any remaining clot, then they grow into fully mature endothelial cells, forming a new endothelial layer. What this means is that any remaining blood clot now sits beneath the new endothelial layer, and within the artery wall itself. It cannot now break off and get stuck somewhere else in the body.

Even more clever is the fact that EPCs have the capability, to become something other than mature endothelial cells. They can travel down another road in the developmental pathway, to become monocytes. Monocytes, in turn, mature into macrophages.

Macrophages are white blood cells whose job it is to clear up all alien materials in the body. Dead cells, invading bacteria, any damaged tissue. They squirt nitric oxide out, oxidise dead and damaged material, such as anything found in a blood clot, then engulf it, before travelling off to the lymph glands. Here, the dead, damaged and alien materials are further broken down, before excretion from the body.

Thus, with EPCs, you have the entire repair and clearance system all in one package. Some of the EPCs that arrive on the scene, form the new endothelial layer. The rest turn into monocytes, then macrophages, which clear away the remnant blood clot.

This process of repair and clearance is what I call ‘healing’. Others choose to call it inflammation, and claim it is the underlying cause of CVD. Good for them. I suspect it may not be a fertile route to travel down.

The other thing to note here is that the substance which is most intimately bonded to the exposed endothelium, at least in humans, is lipoprotein (a) (LP(a). Lipoprotein (a) is Low Density Lipoprotein (LDL) with an extra protein attached to it. A protein called apolipoprotein A. This protein is fascinating, because it has an almost identical structure to plasminogen. Identical apart from a single amino acid.

However, this difference, though very slight, is critical, because it means that TP(a) cannot have any effect on apolipoprotein A. There can be no conversion to plasmin. Thus, any blood clot, or part of the blood clot, containing Lp(a) is extremely resistant to fibrinolysis. It cannot be broken apart, and so remains attached to the artery wall, and will be a major component of the remnant blood clot that is then drawn into the artery wall – and then broken down by macrophages.

This is where Linus Pauling, Mattias Rath, vitamin C, and guinea pigs come into play. I have discussed this area before, but I am going to discuss it again…. Soon.

Before fully signing off on this blog I shall leave you with another thought, which is this. Lp(a) is identical to LDL ‘bad cholesterol’ – apart from a single attached protein – apolipoprotein A. So, if you were closely studying the contents of an atherosclerotic plaque, it would be quite easy to think you were looking at LDL, when you were actually looking at Lp(a)?

Of course, what I have done here is to describe a process of clot formation, and repair, that is probably happening all the time. The next question is obvious. When, and how, can this process become ‘abnormal?’ When, and how, does it lead to CVD?

1: http://www.nejm.org/doi/full/10.1056/NEJMoa1709118#t=article

2: https://www.ncbi.nlm.nih.gov/pubmed/8925184?log$=activity

P.S. those interested in a great deal more complexity, this paper is a belter. http://onlinelibrary.wiley.com/doi/10.1111/j.1538-7836.2007.02515.x/full

Here is one section that explains a great deal in a few words. ‘Recent evidence suggests that ECs [endothelial cells] in regions of disturbed flow in arteries are primed for activation (they have increased levels of NF-κB in their cytoplasm) and that systemic imbalances (e.g. associated with sepsis or cardiac risk factors) may result in the translocation of NF-κB to the nucleus and increased expression of procoagulants such as tissue factor (TF) and adhesion molecules. TM, thrombomodulin; t-PA, tissue-type plasminogen activator; EPCR, endothelial protein C receptor; TFPI, tissue factor pathway inhibitor; VWF, von Willebrand factor.’ And there, I think you have it, in a nutshell. Although I realise that most people have never heard of any of those things.

What causes heart disease part XXXVI (part thirty-six)

5th September 2017

Wipe your mind clear of all previous ideas about CVD. About as easy as standing in the corner and not thinking about a tiger. In reality, once you have read about, and talked about, and researched, and thought about anything, patterns are created in your mind. Familiar landscapes develop, and well-worn pathways become the comfortable and easy routes to travel down.

Say what you like about Ancel Keys (and I had better not, for I would end up swearing a lot), he created the tightly patrolled mental box for everyone. Diet and cholesterol and cardiovascular disease. These are the great beacons that mark out, the map of the mind, where all thinking and discussion must take place. They illuminate all, and beyond them is darkness.

Now, blow out the beacons. Move out into darkness. We shall create a new landscape of thought. We have control of the vertical, and the horizontal, you are entering the Outer Limits. [I suspect some people may not get that reference]. We are breaking free of the box. In fact, there is no box, it no longer exists.

In the distance, there is a glimmer of light… it is our first fact. At least we hope it is a fact. We approach the glittering light and scrape way the grime that has been obscuring it for many years, to reveal…

Atherosclerotic plaques only develop in larger arteries.

Quite close to it, almost hidden away, lies another fact.

Atherosclerotic plaques never develop in veins.

There are two exceptions to the second fact – well, there are more, but these are the most obvious. First, if you take a vein, and use it to create a coronary artery bypass graft, it will develop atherosclerosis very rapidly. Secondly, if you create an arteriovenous fistula AV-fistula (fusing an artery and vein together) for dialysis patients, the venous section will develop atherosclerotic plaques.

Setting aside these exceptions, these two facts were as close to inarguable as I have been able to find. Inevitably, they lead to my first question. Why do plaques develop in arteries, and not in veins? Right now, I can see you doing what everyone does, searching for a simple answer, with thoughts such as:

  • There is less oxygen in veins, and oxygenation is damaging to arterial walls
  • The pressure is less in veins
  • The LDL level is lower in veins (it’s not, but I have heard a lot of people say this)
  • Arteries and veins have a different structure (they do not).

And so on, and so forth. Isn’t the search for a quick and simple answer fun…?

After exploring almost every avenue that I believed could possibly be involved in CVD, I found myself returning more and more often to the difference in blood pressure in veins and arteries as the place where the answers were most likely to be found.

However, I knew pressure, by itself, is not going to cause anything, unless you succeed in ‘bursting’ an artery, or ‘bursting’ the lining of the artery. I mean, this can be done. You can develop an aneurysm (thinned and ballooned area) in an artery, which can then rupture – usually with catastrophic consequences.

But before that, what can pressure do? Force things carried within the artery into the artery wall behind? No, that does not make sense. For that would mean everything carried in the bloodstream would simply be blasted into all artery walls, everywhere. The smallest molecules would go first, molecules such H20 to start with. Does this happen…. No, of course not. Our arteries, and the endothelial cells that line our arteries (and veins), are not leaky.

In short, differences in pressure cannot provide any sort of an explanation.

However, there is a law of fluid dynamics which says – words to the effect – if the pressure in a tube is higher, the velocity of the fluid flowing through a tube will also be higher. Which means that blood is travelling far faster in an artery than a vein. A veritable white-water maelstrom, compared to a meandering river as it approaches the sea.

Thus, it is easy to imagine that anything lining an artery is going to be exposed to far greater ‘forces’ than anything lining a vein. These forces, which I shall call biomechanical stresses, will be particularly intense in certain places. For example, where arteries branch (bifurcate) e.g. where the carotid arteries, that supply blood to the brain, branch off (bifurcate) from the aorta.

Another place of extreme biomechanical stress is within the coronary arteries. These arteries are exposed to a unique stress, in that they are compressed with great force when the heart contracts. Some have likened this to stomping on a hose every second. Indeed, blood cannot flow in coronary arteries during systole (ventricular contraction) because they are squeezed shut.

In general, if you look at where atherosclerotic plaques develop, you find that they most often occur at maximum biomechanical stress. Where carotid arteries (main arteries supplying blood to the brain) branch from the aorta, and also where other arteries branch from the aorta, and within the coronary arteries. It seems, therefore, that biomechanical stress is required for plaques to develop. This is not the same as high blood pressure, but it is closely associated with high blood pressure.

In truth, this idea is not in any way contentious. This is a highly jargon filled section from a paper called ‘Biomechanics of Atherosclerotic Coronary Plaque: Site, Stability and In Vivo Elasticity Modelling.’

Although the coronary and peripheral systems in their entirety are exposed to the same atherogenic cells and molecules in the plasma, atherosclerotic lesions form at specific regions of the arterial tree. Such lesions appear in the vicinity of branch points, the outer wall of bifurcations and the inner wall of curves. Pathologic studies, have shown that healed plaque ruptures are predominantly in the proximal portions of the left anterior descending (LAD), right coronary (RCA), left circumflex (LCx) and left main (LM) arteries. Investigations over the last decade have elucidated both fluid mechanical and most recently structural biomechanical factors that mediated the site of plaque formation.’1

Which is all fine and sensible. However, this very same paper states the following:

‘Plaque formation is now recognized as an inflammatory process triggered by high levels of serum LDL that enter the coronary wall, encounter oxygen reactive species, and become oxidized. The oxidization, in turn, stimulates the recruitment of monocytes that convert to macrophages to phagocytize oxidized LDLs. This forms a necrotic core with recruitment of smooth muscle cells from the media to seal over the fatty core.’

That is the official party line as to how CVD starts, and develops. But if you believe that, you immediately face a conundrum. How can you reconcile the hypothesis that raised LDL entering the artery wall initiates plaque development, with the observation that atherosclerotic lesions form at specific regions of the arterial tree? It is surely one, or the other, but it cannot be both. Sorry, but at this point I need to take you back into the landscape of raised LDL and CVD.

You may think, in fact you probably are already thinking: “Well, biomechanical stress damages the endothelial cells, allowing LDL to enter.” Now, that could be true. However, if that is true, then you have (if you believe in the cholesterol hypothesis), just made a move that will result in checkmate against you.

The argument goes like this:

If LDL can only leak into the artery wall at an area where the endothelial layer is damaged, and this is where plaques develop, this means it cannot leak through in areas where the endothelium is not damaged. Ergo, the first step in the development of plaques cannot be LDL ‘leaking’ into the artery wall past the endothelium, it is damage to the endothelium. Ergo, a raised LDL level is not the primary cause of CVD. Checkmate.

You don’t like that logic? If you prefer a few more facts, using a different approach.

If you think LDL is capable of, simply, transporting itself past the endothelium, then you need to define a mechanism. Is it simply osmotic pressure, with LDL travelling down a concentration gradient from the bloodstream into the artery wall? Is it actively transported through endothelial cells? Does it leak between the endothelial cells? These are the mechanisms that I have seen most commonly proposed – although they are often presented with so much surrounding jargon that it is almost impossible to work out what is being said.

In truth, I have spent years and years trying to establish if LDL can, or cannot, move into the arterial wall, past the healthy, undamaged, endothelium. If I had been organised enough, I could have gathered together ten thousand papers saying that it can, and another ten thousand saying that it cannot.

Having torn up twenty thousand papers, on the basis of complete uselessness, I began with, what may seem a simple question, a thought experiment if you like. Why would endothelial cells allow LDL to pass through them, to then allow LDL to be oxidised in the arterial wall behind? This process serves no physiological purpose, other than to kill you from cardiovascular disease!

The idea that endothelial cells simply cannot prevent this from happening is, frankly bonkers. Cells can quite easily control the passage of single atoms/ions through their cell membranes Indeed, this is one way that all cells function. To give one example, they can pump individual sodium ions out, and individual potassium ions in, to maintain an electrical action potential. They only lose the ability to control their own internal environment, within very tight parameters, when they die.

Therefore, the idea that an endothelial cell cannot prevent a relatively massive LDL molecule from entering the side facing the bloodstream, then passing straight though, then ejecting itself out the other side, is complete nonsense. Complete… nonsense.

Indeed, it has been well established that the only way LDL can enter a cell, is for that that cell to manufacture an LDL receptor, wave it about it the bloodstream to lock onto an LDL molecule, before dragging the receptor and the LDL back inside. Ergo, LDL does not get into an endothelial cell, unless the cell wants LDL to enter. It activates complex processes to allow this to happen.

The reason why some people have very high LDL levels is because they cannot manufacture enough LDL receptors, or the LDL receptors they manufacture are faulty. A lack of LDL receptors, or faulty receptors is, of course, the underlying problem in Familial Hypercholesterolaemia(FH). Proof, if proof were truly needed, that LDL cannot force its way into cells – no matter what the concentration in the bloodstream.

In short, even a superficial understanding of how cells control the passage of atoms and molecules, leads to the inescapable conclusion that LDL cannot possibly travel straight through an endothelial cell, without the activation of complex and highly controlled cellular process.

This problem has been duly noted by those who support the LDL/cholesterol hypothesis. So, the current thinking, although I have never seen it expressed clearly, is that there must be gaps between endothelial cells, wide enough for LDL to leak past.

Again, no. The fact is that, in a healthy artery wall, with healthy endothelium, there simply are no gaps between endothelial cells. Here, from a paper entitled. ‘Endothelial Cell Junctional Adhesion Molecules.’ [jargon alert].

‘Endothelial cells line the lumen of all blood vessels and play a critical role in maintaining the barrier function of the vasculature. Sealing of the vessel wall between adjacent endothelial cells is facilitated by interactions involving junctionally expressed transmembrane proteins, including tight junctional molecules, such as members of the junctional adhesion molecule family, components of adherence junctions, such as VE-Cadherin, and other molecules, such as platelet endothelial cell adhesion molecule.’2

At the risk of simply repeating what this paper says, there are no gaps between endothelial cells. Instead, there is a highly complex structure of proteins and other molecules between each endothelial cell ensuring that nothing gets past – unless the endothelial cells are instructed to let them past. This happens with white blood cells, they can open the junctions between endothelial cells, and move into the artery wall – then out again. Clever stuff.

Of course, if most things travelling in the bloodstream had to overcome complex barriers to get past the endothelium you would die, as your blood would simply circulate round and round, struggling to exchanging nutrients back and forth with the underlying tissue. Which kind of negates the point of having a circulatory system in the first place.

Nature, in the way that nature does, noted this potential problem, and came up with a solution. As blood vessels get smaller, and smaller, the endothelium develops holes – called fenestrations. These fenestrations allow almost everything present in the blood to flow freely in and out of the surrounding tissues/organs. Red blood cells would be one exception.

Why, you could ask, would endothelial cells have fenestrations in them to allow the free passage of molecules in and out, if things can freely pass in and out of non-fenestrated, tightly bound, endothelium?

At this point, I am overwhelmed with the need to make a quick summary:

1: It is impossible for LDL to pass straight through a living endothelial cell

2: Endothelial cells are tightly bound together, and will not allow anything to pass between them.

In addition, here are a couple of other facts to consider.

The first of which is that, in the brain, the endothelium never becomes fenestrated. There are no holes, even in capillaries (the smallest blood vessels in the body). Which means nothing can move into, or be removed from the brain, that the endothelial cells do not grant passage. This barrier function is usually referred to as the blood brain barrier (BBB):

‘Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation.’ 3

To put this another way, if LDL could pass the BBB, then the brain would not need to synthesize its own cholesterol, and the brain does synthesize cholesterol within specialised glial cells. Which is further confirmation that an intact, non-fenestrated endothelium, blocks the passage of LDL.

Now here is a final fact (a final fact in this blog at least) that I would like you to ponder. Which is that large blood vessels have their own blood vessels, known as vasa vasorum. Literally, ‘blood vessels of the blood vessels’. Vasa vasorum surround and penetrate large arteries, and veins, supplying them with the required nutrients.

They are, of course, fully fenestrated (full of holes). Thus LDL, or anything else, can simply leak out of the vasa vasorum and into the artery wall if it so wishes – yes, even down a concentration gradient, if you like to think of it in this way.

Which means that there is absolutely no need for LDL, or anything else, to be absorbed through the endothelium lining the arteries, as it can get in from ‘behind’, so to speak. Which takes me back to my first question here. Why would endothelial cells transport LDL past themselves, and into the artery wall behind – if LDL can perfectly easily get into the artery wall from the vasa vasorum? This truly would be an exercise in pointlessness.

I could go on, as I have only touched upon a small part of the complexity involved here. But I hope to have given you enough food for thought. Yes, you easily can make statements such as ‘Plaque formation is now recognized as an inflammatory process triggered by high levels of serum LDL that enter the coronary wall’. Certainly, if you say it fast enough, and do not think about it, such a statement can seem reasonable.

However, if you start looking at the actual process required for LDL to travel into the arterial wall, you begin to realise that it is (with a healthy and intact endothelium) simply not possible. Or, if it is possible, it should be happening everywhere, in all arteries and veins. Not at discrete points.

At which point, you begin to realise that the cholesterol hypothesis, whilst is sounds superficially reasonable, requires mechanisms of action that just do not exist.

LDL cannot enter the arterial wall, at least not from the lumen of the artery, unless the endothelium has been damaged in some way. If you damage the endothelium, all hell breaks loose – and then we have a completely different story on our hands. One where LDL may have a role in plaque formation, or it may not, but it most certainly cannot be the primary role.

This is a conclusion that I arrived at a long time ago. Not, initially, because I set out to debunk the hypothesis. I simply wanted to understand how a raised LDL could cause atherosclerosis. ‘Because it does’, has never ever been a reply that I am happy to accept. In fact, nowadays I would translate this particular ‘because it does’ into ‘because it must.’ It must, because if LDL cannot pass through, or past, a healthy endothelium, the cholesterol hypothesis is wrong. And it can’t, so it is.

Now I have got that out of the system, I shall move on to look at what happens when you damage the endothelium. For that, logically, must be the first step in plaque formation.

1: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722860/

2: http://atvb.ahajournals.org/content/36/10/2048

3: https://www.hindawi.com/journals/cholesterol/2012/292598/

What causes heart disease part XXXV (thirty five)

19 August 2017

Having spent many years smashing everything into pieces in an attempt to work out what is going on with cardiovascular disease, I am now going to attempt the amazing feat of bringing everything together in some sort of coherent structure. I have no idea how long this may take, so please bear with me while I first set the scene by making a couple of point that need to be made.

Point One:

Explanations exist; they have existed for all time; there is always a well-known solution to every human problem — neat, plausible, and wrong.’ H.L. Mencken.

Cardiovascular disease is best seen as a process. Attempts to find the key, single, cause has created the massive multifactorial monster we see before us today. Unfortunately, the trap of searching for a/the cause seems to be hard wired into our thinking. This approach has worked well for things such as infectious diseases and suchlike, but it does not work here. I have lost track of the number of times someone has come up with the new cause of CVD, then tried to crowbar all observations to fit. Or simply dismiss contradictory evidence.

  • It’s caused by infections
  • It’s all due to vitamin C deficiency
  • It’s all due to blood sugar
  • Its’ all due to inflammation etc. etc. etc. etc. etc.


In truth, I was as guilty of this as everyone else. I believed that ‘stress’ was the cause, and everything could be incorporated within this factor. This is not true. Stress/strain represents one factor that is capable of causing CVD – quite an important one – but it cannot explain everything.

Whilst there obviously are ‘causes’ of cardiovascular disease, they cannot be understood in isolation from process(es). What is going on, and why, and how can things that seem to cause cardiovascular disease be fitted into these processes.

It may seem intellectually unsatisfactory to move away from a simple, single, cause model. We all want the E=MC2 moment, or the untangling of the structure of DNA moment. Eureka! That was never going to happen here, or it would already have happened. If there truly were a single cause it would have been found by now – and it hasn’t.

Point Two:

The evidence base is flawed. In part because studying complex biological systems is, in itself, very difficult to do. The number of variables involved is mind-boggling, and the number possible interactions between those variables is mind boggling to the power one trillion. If you are looking for absolute certainty…. look elsewhere.

Just to give one example of how many potential factors there are. Here is part of a paper by researchers, who looked at geomagnetic disturbance and its impact on heart attacks and strokes (Russian paper):

‘It was shown statistically that during geomagnetic disturbances the frequency of myocardial infarction and brain stroke cases increased on the average by a factor of two in comparison with quiet geomagnetic conditions. These results are close to results obtained by (Stoupel, 1999), for patients suffering with acute cardiological pathology. Our recent study (with L.Parfeonova) revealed the relation between heart ventricular ectopic activity (VEA) and geomagnetic conditions in patients with CHD. On the average 1995 episodes of VEA having on one patient within 24 hours have been revealed in patients, whose records coincided with the periods of geomagnetic storms and 1440 VEA episodes for active conditions. Minimal quantity of VEA episodes was found for unsettled condition: 394. In a quiet geomagnetic condition VEA episodes appeared more often than in periods of unsettled conditions.’1

How many researchers have taken geomagnetic disturbances into account as a potential confounding factor in their research? I would suggest, none. Yet here is a factor that can (possibly) increase the risk of CVD events by 100%.

I chose this example, almost at random, to highlight the point that this stuff is complicated, and there any many, many, uncertainties involved. Can you control any study for all factors ever found to be associated (causally or otherwise) with CVD? No, you cannot.

Alternatively, you can do what many people do. Dismiss research that seems contradictory, or just daft. I can see many people automatically seeking to dismiss a Russian study about the effect of geomagnetic disturbance on CVD on the dual grounds that is a: Russian and b: bonkers. That would be unwise.

Of course, there is the other problem that much of medical research (especially in the highly lucrative area of CVD) has been funded by the pharmaceutical industry, resulting in the problem that most research findings are false:

‘There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when effect sizes are smaller; when there is a greater number and lesser preselection of tested relationships; where there is greater flexibility in designs, definitions, outcomes, and analytical modes; when there is greater financial and other interest and prejudice; and when more teams are involved in a scientific field in chase of statistical significance. Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true. Moreover, for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias.2

This is a famous paper, one of the most cited and read in medical research history. It was written in 2005 and things have got worse, not better, since then.

Oh, but of course, peer review keeps everything on the straight and narrow:

‘The mistake, of course, it to have thought that peer review was more than a crude means of discovering the acceptability – not the validity – of a new finding. Editors and scientists alike insist on the pivotal importance of peer review. We portray peer review to the public as a quasi-sacred process that helps to make science our most objective truth teller. But we know that the system of peer review is biased, unjust, unaccountable, incomplete, easily fixed, often insulting, usually ignorant, occasionally foolish, and frequently wrong.’ Richard Horton, editor of the Lancet.

In this morass, where does one turn?

This is a question that has no definitive answer. Shall I just choose evidence that suits my argument, and dismiss all else? To an extent, the difficulty in disentangling evidence was my spur to write the book Doctoring Data. In it, I attempted to determine what is valid and what is not. How to spot the biases and errors. How to know what it true, from the other stuff?

Answer… it cannot be done. Not for certain. Whatever evidence I choose, it can be criticised – in one way or another. Did the study I am quoting control for geomagnetic disturbance or not? As a general rule, any study – and I mean any study – can be pulled apart and dismissed, if you so wish. Which could leave most of what I do as a smoking ruin.

However, most of the research I look at has one major advantage. There is not much, if any, financial interest, behind it. Other than suppressing it, I suppose.

Yes, of course, I bring certain biases to the discussion. I am almost entirely anti-statin. I am not a great believer in blood pressure lowering – at least not at current levels. I do not believe in the cholesterol hypothesis and I think that the anti-saturated fat dogma is completely bonkers and has no evidence to support it – at all. I believe that salt is good for and, in most people, protects against CVD.

I believe that a high carbohydrate low fat diet is utterly bonkers – especially in those with diabetes. And suchlike. In short, I believe that almost everything we are told is good for you, is bad for you, and vice-versa. With the exception of smoking (bad) and exercise (good).

Having got that out of my system. Let us begin….. in the next blog.

1: http://adsabs.harvard.edu/abs/2014cosp…40E1114G

2: http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0020124

What causes heart disease part XXXIV (part thirty-four)

9th August 2017

Looking for the contradictions

Here was my mantra. ‘If I can find an absolute contradiction to any hypothesis, I shall discard it, and start again.’ I have to tell you that this shiny, bright eyed scientific idealism has had to bite the dust. Primarily, because it can be very difficult to know what a contradiction looks like – for sure.

If Newton had found that every so often apples did not fall from a tree, instead they accelerated upwards and into space, the theory of gravity would not have been born – because it would have been wrong. If your hypothesis is that all swans are white, then the finding of a single black swan immediately negates your hypothesis.

However, in science, refutations are rarely so clear cut. In biological science, there are so many things going on, so many variables to consider, that we are more in the world of weather forecasting, rather than Newtonian physics. There are few absolutes, no completely hard and fast rules.

This, of course, has allowed those who believe in the ‘cholesterol hypothesis’ to shape shift, twist and turn, and adapt the hypothesis to fit any facts. Never, ever, can they be pinned down. Never, ever, can the hypothesis be refuted by any single fact, or even a combination of facts. Believe me, I have tried. It is like attempting to nail mercury, firmly, to the table.

Take the hypothesis that a raised cholesterol level causes heart disease. Already, I imagine, you can see this fragmenting before your very eyes. What do you mean by a high cholesterol level. Total cholesterol? Low density lipoprotein (LDL) level? The ratio of LDL to HDL? Are you looking at LDL-C or LDL-P. Are you considering VLDL levels, what about oxidised LDL, or small dense LDL, or light and fluffy LDL.

That, without trying, is nine ‘cholesterol’ variables. And the possible combination of nine variable is nine factorial. This allows 362,880 possible combinations of ‘cholesterol’ that could be tested. In truth, I didn’t really try very hard there with ‘cholesterol’. I could add in at least sixteen variants of HDL (that I am aware of), including apoA-1 Milano (the super-protective form of HDL – allegedly). Which give us another sixteen ‘cholesterol variable).

9 + 16 = 25 variables (assuming they act independently)

The factorial of 25 is 1.55×1025   or: 15,511,210,043,330,985,984,000,000.00

As you can see, there is not the remotest possibility, ever, of trying to work out how all the forms of ‘cholesterol’ may interact. Even if you created theoretical models and fed them into a computer, you would be there for a very, very, long time.

Equally, there is no possibility of refuting the causal impact of any single cholesterol factor. And, if you did manage to pin anything down, the broader issue of ‘definition’ will simply be altered.

Just trying to look at the apparently simple concept of a high total cholesterol level itself. You would think it would be possible to say that there is an average level, a high level and a low level. This would allow you to say that the average total cholesterol level of everyone in the world (who has had their cholesterol level tested) is five point three (5.3mmol/l). [I just made this figure up]

Thus, anyone above this figure could be said to have a cholesterol level above average. Or high. And vice-versa. Just as you could measure the height of everyone in the world, and find an average. However, this cannot be done. Well, it could be done, but it has not been done, and I suspect it never will be done. Because, in the case of cholesterol levels, average is most definitely not considered ‘normal.’

Here, for example, is what is said about cholesterol levels on the Benecol website:

‘The government recommends that healthy adults should have a total cholesterol level below 5 mmol/L. In the UK, three out of five adults have a total cholesterol level of 5 mmol/L or above, and the average cholesterol level is about 5.7 mmol/L, which can be a risk factor in the development of coronary heart disease.’1

Thus, the average cholesterol in the UK is not normal. It is ‘high’ enough that it is a risk factor for heart disease. So, average is not normal. Is 5mmol/l normal? Well, Heart UK (The UK cholesterol charity – funded almost entirely by the pharmaceutical industry), makes this statement:

‘Total Cholesterol (TC) – this is the total amount of cholesterol in your blood. Ideally it should be 5 mmol/L or less.’

Which would suggest that anything below 5mmol/l is fine and normal? But if you have diabetes, you should have a cholesterol below 4.0mmol/. Diabetes UK lists the following blood lipid (cholesterol) targets as a guide for people with diabetes:

  • Total cholesterol: under 4.0 mmol/l
  • LDL levels: below 2.0 mmol/l2

Which means that four is actually better than five – thus five is high? And if you have had a heart attack it is recommended to get cholesterol levels below 4.0mmol/l. Ergo, a level of 5.0mmol/l must be causing the developing of heart disease. So, five is not actually normal. It is high.

The general consensus, though never very clearly stated, is that, whatever your level of cholesterol, you will gain benefit from lowering it. Which, logically, means that any level of cholesterol increases the risk of heart disease. Thus, there is no optimal level. I have seen it argued that the optimal level for cholesterol is 1.5 mmol/l. 3

Setting the level at this point means that, apart from a vanishingly small number of people, everyone in the western world has a ‘high’ cholesterol. Therefore, you can never argue that a high cholesterol does not cause heart disease, because everyone who suffers from heart disease has a high cholesterol level. In contrast, no-one with a ‘normal’ cholesterol level suffers from heart disease.

With cholesterol levels, we have the following situation:


High                                                                                           = high

Average                                                                                     = high

Low                                                                                            = high

Very low                                                                                    = high

Very, very low                                                                          = high

So low that you cannot find anyone with this level*        = normal

When confronted with logic like this, the cholesterol hypothesis is perfectly protected from attack. It is a non-refutable hypothesis. As Karl Popper said, if you cannot construct your hypothesis in such a way that it can be refuted, it is not science a.k.a. nonsense.

Which is why, in the end, I decided on another approach entirely. Replace the cholesterol hypothesis with something that actually fits the facts without the need for endless distortion of facts, and reality. Also, to try to create a hypothesis whereby data could be found to refute it.

At present, just to repeat myself for the final time, the cholesterol hypothesis is that a high cholesterol level causes CVD. This cannot be refuted, because there is no such thing as a normal cholesterol level. All levels are high. Res Ipsa Loquitir.

1: http://www.benecol.co.uk/cholesterol/understanding-your-number

2: http://www.diabetes.co.uk/diabetes-health-guidelines.html

3: http://www.onlinejacc.org/content/43/11/2142

*or at least, so few people exist that no study could ever be done

What causes heart disease part XXXIII

29th July 2017

Viagra…. again

When I began this long and winding series on cardiovascular disease (CVD) I already knew a few things that I thought were critically important to the processes underlying CVD.

The first was that, in order to get atherosclerotic plaques started, you needed to damage the endothelium in some way [the endothelium being the layer of cells lining blood vessels]. The second was that blood clot formation was the next key event – thrombogenesis.

Therefore, if you could protect the endothelium and/or stop blood clots from forming, you would most likely see some significant benefits on the risk of CVD. Mainstream medicine is fully in agreement that drugs that reduce the risk of blood clotting will usually have some benefit on CVD risk. Drugs such as aspirin and Clopidogrel – and suchlike.

In addition, most of the acute management of strokes and heart attacks is focussed on getting rid of the blood clot causing the acute event. We have clot busters and stents and other interventions to remove, squash, blow apart and bypass the clot. I often describe interventional cardiologists as ‘blood clot managers’ – obviously not to their faces. They like to think it is all far more cleverer than that.

In short, the importance of blood clotting in CVD is beyond any dispute. Which is why CVD sometimes sits under the umbrella term of ‘atherothrombosis.’

However, the role of the endothelium garners far less attention. If it is ever mentioned, it is towards the end of the process of atherosclerotic plaque development, where it has been noted that in advanced plaques the endothelium is often completely missing. Or if not missing, significantly dysfunctional.

The reason for this, never openly stated, is that to promote the idea that atherosclerotic plaques start with endothelial dysfunction, completely undermines the cholesterol hypothesis. The current hypothesis is that low density lipoprotein (LDL) a.k.a. ‘bad cholesterol’ leaks past/through the endothelium, and into the arterial wall behind.

This in turn triggers the inflammatory processes that creates the plaque (I am paraphrasing madly here). Once the plaque has grown to sufficient size, the overlying endothelium is: weakened, damaged, dysfunctional – choose the word you like best, or add your own. This, in turn makes it more likely that a blood clot will form, as a dysfunctional endothelium no longer represent a powerful anti-coagulant surface, which in my mind I like to think of as a brand new ‘Teflon non-stick frying pan.’

However, if you believe that endothelial dysfunction is the first step, then an entirely different process opens. One that goes like this: The endothelium is damaged/dysfunctional, so a clot forms at that point. The clot is then drawn into the arterial wall and becomes the core of an atherosclerotic plaque which can then grow through repeated blood clots forming at the same point.

This, as I think I have explained many times, fits all the observed phenomena far better than the current cholesterol hypothesis. However, it does knock LDL off its perch as the key factor causing CVD. It can only have a bit part, amongst many other players, in this particular game.

Currently whilst all other conjectures on CVD are allowed to change shape, and swirl around in a massive multifactorial dance, one idea lies beyond challenge, which is that LDL is the conductor, the key player, the factor without which nothing else happens:

Three Rings for the Elven-kings under the sky,
Seven for the Dwarf-lords in their halls of stone,
Nine for Mortal Men doomed to die,
LDL for the Dark Lord on his dark throne
In the Land of Mordor where the Shadows lie.
LDL to rule them all, LDL to find them,
LDL to bring them all and in the darkness bind them
In the Land of Mordor where the Shadows lie.


Or something of the sort.

Currently, it is certainly true that the dark lord rules Mordor, and the ever-seeing eye seeks out all those who criticise the cholesterol hypothesis. Here, for example, is a recent missive from Mordor:

Statin Denial: An Internet-Driven Cult With Deadly Consequences (Editorial JAMA 25th July 2017)

‘We are losing the battle for the hearts and minds of our patients to websites developed by people with little or no scientific expertise, who often peddle ‘natural’ or ‘drug-free’ remedies for elevated cholesterol levels,” adds Steven Nissen. This “Internet-driven cult” denies statins’ benefits and whips up fears of side effects, then profits from the resulting confusion by peddling snake oil.’1

I think I need to shout ‘House’ at this point. Nissen has manage to get in the full set of insults. ‘Denier’, ‘cult’, ‘deadly’, ‘whips up’, ‘fears’, ‘profit from selling snake oil’. What’s missing. Mass murderers…child killers.

Would this be the same Steven Nissen who stated the following, when the new cholesterol guidelines came out in 2013:

“The science was never there for the LDL targets.’ He said. ‘Past committees made them up out of thin air.’ He added.”2 Make your mind up Steven. Either there should be LDL targets or not.

Where was I. Oh yes, just explaining that anyone who dares criticize the cholesterol hypothesis – which is basically interchangeable with statin worship – can find themselves under significant attack. As you can imagine, those working in mainstream research are going to make sure they never do such a silly thing. Grants have a nasty habit of drying up. Tenure can be whipped from under your feet at any time. Do not attract the interest of the ever-seeing eye, my precious.

However, facts have this nasty habit of coming along that cannot be fitted within the LDL hypothesis, and are completely supportive of the ‘endothelial damage/clotting’ hypothesis. A few blogs ago I wrote of a study demonstrating that men with diabetes, who used Viagra, or other PDE5 inhibitors e.g. Cialis, were far less likely to die from CVD.

We know that Viagra/sildenafil has, as a primary mode of action, increasing nitric oxide synthesis in endothelial cells. This is how it maintains erections in erectile dysfunction. It also reduces blood pressure, particularly reducing blood pressure in the lungs. Nitric oxide is also the most powerful anti-coagulant agent known to man. Furthermore, it protects the endothelium from damage, and stimulates the production of endothelial progenitor cells in the bone marrow.

What effect does it have on LDL? None.

What effect does it have on cardiovascular and overall mortality? Well, very recently I was sent this paper: ‘Association between treatment for erectile dysfunction and death or cardiovascular outcomes after myocardial infarction.’

This was a study on over forty-three thousand men over a six-year period, who had previously had a myocardial infarction (MI). Just over forty thousand did not have medication dispensed for erectile dysfunction (ED) (40,077), three thousand did (3,068). They were split into three groups: lowest number of ED scripts, medium and highest number.3

For the sake of brevity here I am just looking at the highest script group.



Well, well, well. Perhaps a couple of other well, wells for luck.

Yes, this study was observational. Yes, this means that other factors that may be at play. For example, those men requesting Viagra and other PDE5 inhibitors, may have been healthier than those who did not. But it is hard to believe they were over five times as healthy. The simple fact is that, when you see an effect as massive as this, it can generally be considered that you are looking at a causal relationship.

To put it another way, this is 81% relative risk reduction in overall mortality. Compare this with statins, in secondary prevention (using best figures possible), statins achieved a 15% relative risk reduction in overall mortality. But statins lower cholesterol levels…right? That is how they work…right? So, LDL does have an impact?

Well, it is of course true that statins lower the LDL level. However, they also do some other things as well. Now, in general I am not a great fan of animal studies. However, I am just presenting one study, done on atorvastatin, looking at the impact on many factors (including NO synthesis) that have nothing whatsoever to do with LDL lowering.

The study was called:

Atorvastatin enhanced nitric oxide release and reduced blood pressure, nitroxidative stress and RANTES levels in hypertensive rats with diabetes.’

A quick summary:

  • Atorvastatin had no effect on blood glucose or cholesterol levels
  • Blood pressure was reduced by 21% (in diabetic rats)
  • RANTES levels were reduced by 50% (RANTES is a ‘chemokine’ associated with endothelial damage)
  • Nitric Oxide (NO) was increased
  • ONOO (peroxynitrate) was decreased. (ONOO is a potent inhibitor of NO).

Summary: ‘These findings provide insights into mechanisms of restoration of endothelial function and vascular protection by atorvastatin in diabetes and hypertension.’ 4

When statins first emerged, they swept all before them. Included the discussion on what causes CVD. Cholesterol skeptics, such as, Professor Michael Oliver, were completely bowled over, and admitted they had been wrong, when statins were shown to lower CVD risk (the true magnitude of the benefits was massively over-hyped, but that is a discussion for another day).

Statins were designed to lower LDL/cholesterol and lower CVD risk and they did. End of argument.

Well, perhaps not quite.

If you decide to look more closely at the process of CVD, and more closely as the actions of statins, a different picture emerges. One which fully supports endothelial damage as the first step in plaque formation. Because statins do many more things than LDL lowering. It could be said that statins are simply the poor man’s Viagra (other PDE5 inhibitors are available).


1: http://www.latimes.com/science/sciencenow/la-sci-sn-statin-denial-20170724-story.html

2: http://www.nytimes.com/2013/11/13/health/new-guidelines-redefine-use-of-statins.html

3: https://www.ncbi.nlm.nih.gov/pubmed/14692706

4: https://www.ncbi.nlm.nih.gov/pubmed/25716966

Diabetes Unpacked – a new book

Last year I was asked if I would contribute to a book on diabetes. Any money made from royalties would go to The Noakes Foundation in South Africa, a non-profit organisation which aims to advance understanding of the low carb high fat (LCHF) diet, in order to help people eat more healthily. Mainly in South Africa, but also spreading the ideas around the world.

I told the publishers that my ideas on diabetes were not necessarily shared by anyone else, because my brain was turned inside-out at birth by a careless midwife, and I can never see things the same way as everyone else.

In truth, despite my in-built ‘outside in’ way of thinking, I am in (virtual) full agreement with this project, and the view that if you want to avoid diabetes, the correct diet is low carb, high fat (LCHF). If you are unfortunate enough to have diabetes, it is critically important to eat a LCHF diet.

Unfortunately, for reasons that I have discussed before, mainstream medical thinking has got this matter twisted through one hundred and eighty degrees. They tell us we must eat a high carb low fat diet. This is completely bonkers. It makes no sense from any aspect of human physiology, or science, or logic. But, there we go. To quote the film Inception. ‘The most resilient parasite is an idea planted in the unconscious mind.‘ Quite

The most resilient idea in medical science appears to be that fat, particularly saturated fat, is bad for us. Carbohydrates, on the other hand, are good for us. This idea cannot be shifted by facts, logic, science, or any argument that I have yet managed to find, at least not in the minds of most people – and all mainstream experts.

The parasitic resilience of this idea would not matter, if this idea were not underpinning the massive increase in obesity and diabetes that we are seeing in the Western World. If it were not an idea that is damaging, and killing, millions of people. But it is, so it does matter.

And so, in another attempt to change thinking, and to educate, many brilliant thinkers (including me, of course), I have contributed to the book ‘Diabetes Unpacked’. This is what the blurb says:

Diabetes used to be rare and clear. One boy in the school had type 1 and a friend of a friend’s granny had Type 2. We now see adults being diagnosed with type 1 and children growing up with Type 2. There are over 400 million diabetics world-side – 4 times are many as in 1980. The vast majority of these have Type 2 – sometimes judged as a ‘lifestyle’ disease.

The traditional view of diabetes is that it is a ‘chronic and progressive’ condition and that nothing can be done about it. Serious complications include loss of eyesight, amputations and death.

This book has gathered together some of the finest minds working in the field of diabetes and diet. The result is a collaboration of chapter by thought leaders, academics and doctors addressing the big issues. What is diabetes? What are the different types? What causes is? Who gets it? Why do we eat so much carbohydrate? Why do diabetics die of heart disease? Why do athletes commonly get Type 2 diabetes?

The writers in this book approach diabetes from many different angles, but they all share one common belief: Diabetes does not need to be ‘chronic and progressive.’ Both Type 1 and Type 2 can be substantially alleviated and the latter can be put into remission. Let us tell you how…’

The Authors are: Professor Tim Noakes; Ivor Cummins, Dr Robert Cywes, Dr Jason Fung, Dr Jeff Gerber, Mike Gibbs, Dr Zoë Harcombe, Dr Ian Lake, Lars-Erik Litsfeldt, Nina Teicholz, Dr David Unwin, Dr Neville Wellington, Jen Whitington (‘Fixing Dad’), Dr Caryn Zinn and me.

Whatever your interest – overall health, weight loss, diabetes – the importance of diabetes on heart health, I would urge you to buy this book and help The Noakes Foundation to spread the word.

(publishers’ note: Book is available as limited edition hardback and to pre-order here. General release is end August when it will be available through usual book channels as paperback and eBook)

What causes heart disease part thirty-two (XXXII)

Stress and heart disease

I have drifted around the issue of stress and cardiovascular disease (CVD) for some time. For many years I pursued the idea that stress was the cause of CVD. Indeed, I had it all worked out, fitting all facts about CVD within this model. But…

I was at a conference in Saudi Arabia a few years ago, giving my ‘How stress causes CVD’ lectures, to great acclaim, or so I thought. However, Paul Rosch, who was also attending said to me, one evening at dinner. ‘It is all very well to show that stress is associated with heart disease, but you have not really established a mechanism.’

This, I realised, was true. I could show things such as the fact that severe depression can cause insulin resistance, even type II diabetes. Also, that depression is associated with a much higher rate of CVD, as are almost all metal health diseases. On average, someone with a mental illness can expect to die around twenty years earlier than those in the surrounding population.

I could show that psychosocial stress lead to Hypothalamic Pituitary Adrenal-axis [HPA-axis] dysfunction, which then drove the metabolic syndrome, with a much higher rate of CVD. The HPA-axis is the conductor of the entire ‘stress’ system.

At one stage I became very interested in spinal cord injury, and CVD. I discover that, the level the spinal cord injury occurred, made very significant differences to the rate of CVD. This, in turn, seemed almost entirely dependent on whether the autonomic nervous system was spared, or damaged.

The autonomic sympathetic/parasympathetic nervous system co-ordinates the ‘flight or fight’, stress, response. It runs down the spinal column before fanning out to link up to all of the organs in the body. You have little conscious control over it, which is why it is often called the ‘unconscious’ nervous system.

The sympathetic part of the autonomic system does such things as, speeding up the heart rate, constricting the bladder, redirecting blood to the muscles. Also stimulating the release of stress hormones, such as cortisol, to increase blood clotting and raise blood sugar levels – all good things in preparation for a fight.

I figured, along with many others, that if the fight or flight response was chronically activated, this would have severe and potentially damaging effects on the body. A chronic ‘dysfunctional stress response’ if you like. It appeared that much of the damage caused by a dysfunctional stress response centred around the stress hormone cortisol.

This idea was further strengthened by the looking at Cushing’s disease, a condition whereby the adrenal glands produce too much cortisol – for various reasons. People with Cushing’s disease have a spectrum of biochemical and physiological abnormalities, from raised blood pressure to severe insulin resistance, raised blood clotting factors, and suchlike.

Those with Cushing’s almost always develop the metabolic syndrome, and often frank type II diabetes. They have a vastly increased risk of dying of CVD. Around 600% (relative increase in risk). Last week I was sent a paper, looking at Cushing’s, called ‘Markers of atherosclerosis in patients with Cushing’s syndrome: a meta-analysis of literature studies.’

The authors found: ‘Cushing’s disease is associated with an increased intima-media thickness (IMT), higher prevalence of carotid plaques, and lower flow-mediated dilation as compared with controls. These data consistently suggest the need for a strict monitoring of early signs of subclinical atherosclerosis in Cushing’s patients.’1

In fact, the prevalence of atherosclerotic plaques was 988% higher (relative risk), than in controls. This is, basically, a ten-fold increase in the risk of plaques, and that moves Cushing’s Disease from association to causation.

I have also looked at people who used steroids for various medical conditions and found that they had a greatly increased risk of CVD. It is estimated that regular steroids use increases CVD risk by around 400% (relative increase in risk). For those who do not know, steroids are often called corticosteroids, because they all used cortisol as the building block. [Cortisol is also called a ‘steroid’ hormone].


PREDNISOLONE – A commonly prescribed ‘steroid’

Whilst everything was, of course, rather more complex that this, with far more strands of evidence to gather together. I had worked my way towards a pretty clear causal chain that looked something like this:

Negative psychological and/or physical stress → HPA-axis dysfunction → abnormal cortisol secretion → metabolic syndrome/type II diabetes → atherosclerosis → increased risk of CVD

Now, I think that this model is still perfectly usable, and it explains a lot. However, although I drew a simple arrow from metabolic syndrome/type II diabetes → atherosclerosis, this is the bit that Paul Rosch was talking about. What is actually happening here? It is all very well to state that something causes something else, but you still need to explain how.

I realised that I did not know how, other than in general terms. I also realised that there were many other things that ‘cause’ CVD, that are not stress related e.g. smoking, omeprazole, Kawasaki’s disease, air pollution, Avastin etc. etc. How could all these be fitted into that one small arrow. That is when I ripped up the stress hypothesis, to start again. Pretty painful, but necessary.


1: https://www.ncbi.nlm.nih.gov/pubmed/27763781

British Society of Lifestyle Medicine Conference

On the weekend of the 1st July I am giving a talk at the British Lifestyle Conference in Bristol UK.

This is a great grassroots movement of people, and many doctors, who are trying to achieve a more holistic approach to health. I hope some of you can come along. Here is what the organiser, Dr Rob Lawson, has put together for a mention on my blog.

Vital optimism at work – and play.

Lifestyle Medicine has been shaped by the natural evolution of Medicine. It is an established approach that focuses on improving the health and wellbeing of individuals and populations. It combines the broad facets of modern healthcare practices with the deeper understanding of being human. In the 21st century it has never been more important as a concept. And that is to create a society and an environment, from cell to community, which nurtures healthy longevity.

It requires an understanding and an acknowledgement of the physical, emotional, environmental and social determinants of disease and wellbeing. Hence the LM practitioner will engage with us as patients and operate within a boundary of evidence-informed medicine. A boundary in which our ideas, values, mind-set and social context blend not only with the clinicians’ expertise but also with clinical research outcomes.

Importantly, Lifestyle Medicine has a wider responsibility to recognise upstream determinants of disease and to promote population health, to protect ecological health and to reduce health inequity. This requires a realistic team approach and recognition that not one discipline or profession alone can meet our health needs.

On 1st July 2017 in Bristol Dr Malcolm Kendrick will be joining other world renowned speakers in Bristol at the inaugural Conference of the British Society of Lifestyle Medicine, the Science and Art of healthy longevity, https://bslm.org.uk/event/vital-optimism/, to which you are warmly invited. If you have never heard him speak – this is your chance! No better way to spend a Saturday in July

What causes heart disease – part thirty one (XXXI)

What is the final event?

(The upside down*)

The final event in most heart attacks, and strokes, is the development of a large, and often fatal, blood clot. If this happens in an artery in the heart, a coronary artery, it cuts off blood supply to an area of heart muscle and can lead to a myocardial infarction (MI) [myocardium = heart muscle, infarction = death of tissue due to lack of oxygen].

There is a related, but different mechanism of action, in most, strokes. In this case a blood clot that has formed in an artery in the neck (carotid artery), breaks off and travels to the brain where it gets stuck, blocking an artery. This leads to a cerebral infarction. There are other forms of stroke, with other causes, but this is the most common.

These are generally accepted models, and for the sake of brevity, it is also the model I am using here. Although I accept that it is not that simple. For example, you can have an MI with no blood clot found. Here, from a paper entitled: ‘Acute myocardial infarction with no obstructive coronary atherosclerosis: mechanisms and management’:

‘Myocardial infarction (MI) with no obstructive coronary atherosclerosis (MINOCA) is a syndrome with different causes. Its prevalence ranges between 5 and 25% of all MIs.’1

A heart attack with no blood clot. In truth, I think this can be easily explained, within the ‘obstructive’ model, but it would take too long for this blog. I will cover it at some point.

Anyway, to get back on track. It is generally accepted that the final event in cardiovascular disease is the formation of a large blood clot. This is the thing that causes both fatal, and non-fatal, strokes and heart attacks. Which is why atherosclerosis, as a disease, is often referred to as atherothrombosis. The idea being that atherosclerotic plaques gradually build up, over decades. In the final stage, the plaque ‘ruptures’ triggering the formation of a large and deadly clot.

The suggestion here, never ever explicitly stated, is that we have two different processes in operation. Plaque formation, then the blood clot. Or maybe you could look at this as one process, in two parts. Plaque growth, then plaque rupture – causing thrombus formation.

However, it is perfectly possible for thrombi to form with no underlying plaque, so the two processes need not be associated with each other. People with Hughes’ syndrome, for example, can die of strokes and heart attacks quite suddenly, caused by blood clots, with no plaque to be seen. [Hughes syndrome causes the blood to be highly likely to clot – hypercoagulable].

Which leaves the question hanging somewhat. Do we have one process – or two? I believe that the main reason for using the term atherothrombosis, is because this allows mainstream thinking to draw everything together as different manifestations of the same underlying process. Raised cholesterol causes plaques, these rupture, then a clot develops (which would not have formed had the plaque not been there). This allows clear wiggle room, but at some point you must decide, one process or two. This is not quantum physics.

In my world, it is far simpler. There is only one process. Atherosclerotic plaque are simply blood clots, in various stages of growth and/or repair. Plaque growth represents the formation of a new blood clot, at the same point, which is not cleared away properly. The final ‘thrombotic’ event is just a big enough clot forming to do real damage.

The first time I started to think about this seriously, was when I was reading a paper called ‘A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis. A Report From the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.’ The things I do for fun … clearly, I am just a geek.

Anyway, this paper rambled on and on, and on. Until, whilst propping my eyelids open, my interest suddenly sharpened as I came across the section on the definition of Type V(a) atherosclerotic plaques – don’t ask. For those who enjoy a bit of scientific jargon, here it comes. If you don’t care for jargon, just look at the text I have put in bold at the end.

‘Sequential histological studies of the lesions of large populations indicate that reparative connective tissue forms in and around regions of the intima in which large accumulations of extracellular lipid (lipid cores) disarrange or obliterate the normal cell and intercellular matrix structure. Sometimes the new fibrous tissue accounts for more of the thickness of the lesion than does the underlying lipid accumulation.

The new tissue consists of substantial increases in collagen and smooth muscle cells rich in rough-surfaced endoplasmic reticulum. In cases in which this tissue is particularly thick, some or much of it may be the remnant of thrombi that were incorporated and organized. Capillaries at the margins of the lipid core may be larger and more numerous than in type IV lesions, and they may also be present in the newly formed tissue. Lymphocytes, monocyte-macrophages, and plasma cells are frequently associated with the capillaries, and microhemorrhages may be present around them.

Type Va lesions may be multilayered: several lipid cores, separated by thick layers of fibrous connective tissue, are stacked irregularly one above the other. The term multilayered fibroatheroma can be applied to this morphology. The lipid core that is deepest and closest to the media may have formed first. Mechanical forces may play a role in the modeling of such lesions.

Additional lipid cores in locations and planes different from the first could be induced as asymmetric vascular narrowing and changes in lumen configuration modify hemodynamic and tensile forces, creating a redistribution of the regions of predisposition for lesion formation.

The architecture of some multilayered fibroatheromas could also be explained by repeated disruptions of the lesion surface, hematomas, and thrombotic deposits. Organization (fibrosis) of hematomas and thrombi could be followed by renewed accumulation of macrophage foam cells and extracellular lipid between the newly formed fibrotic layer and the endothelial surface.’ 2

In layman’s terms what does it mean? It means that a number of plaques look exactly as if they were created by the repeated formation of blood clots, one on top of another. A concept further reinforced, when the paper looked again at thrombosis.


‘It has been reported that advanced atherosclerotic lesions containing thrombi or the remnants of thrombi are frequent from the fourth decade of life on. In 1975 Chandler and Pope compiled and reviewed studies that reported the frequency and nature of lesions with incorporated thrombi.

In a recent study of a population aged 30 to 59 years, 38% of persons with advanced lesions in the aorta had thrombi on the surface of a lesion. These thrombi ranged in size from minimal (microscopic) to grossly visible deposits, and some consisted of stratified layers of different ages. Immunohistochemistry revealed wavy bandlike deposits related to fibrin within the advanced lesions of an additional 29% of persons. Because of their structure, these were thought to represent the remnants of old thrombi. Similar data were reported by other authors.

The fissures and hematomas that underlie thrombotic deposits in many cases may recur, and small thrombi may reform many times. Repeated incorporation of small recurrent hematomas and thrombi into a lesion over months or years contributes to gradual narrowing of the arterial lumen. Some thrombi continue to enlarge and occlude the lumen of a medium-sized artery within hours or days.’

Perhaps the key sentence here, from my point of view, is the following:

‘Repeated incorporation of small recurrent hematomas and thrombi into a lesion over months or years contributes to gradual narrowing of the arterial lumen.’

Here, right here, is proof of the concept that plaques definitely do grow through repeated thrombus formation at the same point on the artery. Do all plaques do this? My own belief is that they do, but in many cases the repair mechanisms and other factors disrupt a clear picture of layered plaque growth. Essentially, the core of the plaque turns into mush (known as a lipid core) which obliterates evidence of how the plaque actually grew.

What else supports the idea that plaques are, in reality, blood clots? Well, very early on in their development, rather than in the third or fourth decades of life, you can find high levels of fibrin and fibrinogen, which are key components of blood clots. Here from a paper ‘Lipids and plasma fibrinogen: early and late composition of the atherosclerotic plaque.’

The precursor of large fibrous plaques appears to be the gelatinous lesion, which is characterized by oedema, accumulation of large amounts of low density lipoproteins and fibrinogen in the expanded interstitial fluid space, deposition of fibrin, and smooth muscle cell proliferation. It is postulated that deposition of fibrin may be a key event, stimulating smooth muscle cell proliferation by providing a scaffold for migration, a source of fibrin degradation products which are mitogenic, and binding thrombin. Fibrin may also be a factor in lipid accumulation because it binds lipoprotein (a) with high affinity, and may also bind low density lipoprotein.’3

In short, early plaques contain a lot of fibrin (key component of a blood clot), also lipoprotein (a), which is LDL with a different protein attached. Fibrin binds to Lp(a) forming very stable, and difficult to remove, blood clots. So, it is not just in type V(a) plaques that we find evidence of blood clotting. We find it very early on as well.

Sorry, If I am getting a bit jargonified at this point – if that is indeed a word. But I am aware that some highly trained scientific people do cast their eyes over this blog, and I do not want to make this too broad brush. Also, here, I am discussing the very core of my ideas about CVD, and I want to be as accurate as I can be. Equally, I do not want to put people off by delving too deep.

So, at this point, I shall only look at one more highly scientific study, which I think is important. One of the things I always tend to do, is to look at extremes. By which I mean populations with the highest rates of CVD, or medical conditions that accelerate CVD, and suchlike.

I believe answers are to be found at the extremes. To that end I became very interested in people who received heart transplants. For they, unfortunately, develop atherosclerosis at a very high rate. It tends to be called vasculopathy, as it is not exactly the same as atherosclerosis, but that may simply be a result of how fast it develops.

Cardiac allograft vasculopathy (CAV) is the major cause of long-term mortality after heart transplant (HTx). Cardiac allograft vasculopathy has heterogeneous pathologic features characterized by vascular wall inflammation, fibrous intimal thickening, and atherosclerosis.’

I believe that, because it is developing quickly, it is possible to see ‘plaques’ forming and growing in a way that is very difficult in the rest of the population. Or, to put it another way, we have an accelerated model of CVD, where things are revealed that may normally be hidden.

Here is the key section from the paper: ‘Repeated episodes of thrombosis as a potential mechanism of plaque progression in cardiac allograft vasculopathy.’


In conclusion, our observations demonstrate that a finding of ML (multi-layered) appearance, which may be indicative of repeated episodes of mural thrombosis, is not infrequent in asymptomatic cardiac transplant recipients. These findings may contribute to progression of cardiac allograft vascolopathy (CAV). The current study gives new insight into the potential role of coronary thrombosis in plaque progression in CAV.’4

Once again, repeated thrombus formation and plaque growth, causing multi-layered plaque progression.

I shall finish here by quoting myself in a previous blog:

‘Interestingly, at one point Pfizer also started to promote atherothrombosis as the cause of heart disease. For sentimental reasons I have kept hold of an educational booklet produced by Pfizer in 1992. On page four it states:

Several features of mature plaques, such as their multi-layered pattern, suggest that the platelet aggregation and thrombus formation are key elements in the progression of atherosclerosis. Platelets are also known to provide a rich source of growth factors, which can stimulate plaque development.

Given the insidious nature of atherosclerosis, it is vital to consider the role of platelets and thrombosis in this process.’ [Well, quite]

There is little point in referencing this document, as I probably have the only copy left in existence. It is called ‘Pathologic triggers. New insights into cardiovascular risk.’ Produced by Medi Cine Inc. For Pfizer Inc Copyright 1992, All rights reserved etc. etc.

It is interesting that when Pfizer did not have a statin, they were looking away from cholesterol as a cause of cardiovascular disease. It will come as no surprise to you that this was not through some altruistic attempt to discover the truth about the true cause of heart disease. It was to help market their drug doxazosin (a BP lowering drug) which had some additional anticoagulant properties.’

Of course, I have not answered all questions here. But I wanted to give you some insight as to my core thinking on CVD. Having jumped around for years I decided to start at the end, the final blood clot, and then worked backwards.

Was it possible, I asked myself, that blood clotting was not just responsible for the final clot, but also for the entire process of atherosclerosis? I believe that the evidence is out there, and clearly supportive, if you choose to look at it this way round.

I suppose you could say that I do not believe in atherothrombosis. I believe in thromboatherosis (you’re right, I just made that word up). In thromboatherosis, plaques start, and grow, through repeated thrombus formation at the same spot in an artery. In the end, a clot gets big enough to cause a stroke or heart attack. Sometimes the clot can be big enough to kill, without any underlying plaque, but normally it will form over an already existing plaque – where plaque rupture can be the trigger.

In short, there is only one process in CVD. It is the development of atherosclerotic plaques through repeated thrombus formation, followed by the final thrombus formation. As you can see this is actually very close to mainstream thinking. The only difference is that you have to flip your thinking through one hundred and eighty degrees, to see it upside down.


1: https://academic.oup.com/eurheartj/article/36/8/475/496887/Acute-myocardial-infarction-with-no-obstructive

2: http://circ.ahajournals.org/content/92/5/1355

3: https://www.ncbi.nlm.nih.gov/pubmed/7634262

4: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787274/

*for those who enjoyed Stranger Things

P.S. Pop quiz. Why do plaques never develop in the heart itself? Here the pressure is highest, damage to endothelium must be greatest and yet, and yet, no plaques – ever.

What causes heart disease – part XXX

Inflammation – or not

Over the last few years there has been a significant shift, from many researchers, towards the idea that atherosclerosis is an inflammatory process, to a greater or lesser extent. Below is a quote from a cardiac surgeon. A man who admits he was wrong about cholesterol being the main underlying cause CVD, so I can applaud him for that. He goes on to say:

‘Simply stated, without inflammation being present in the body, there is no way that cholesterol would accumulate in the wall of the blood vessel and cause heart disease and strokes. Without inflammation, cholesterol would move freely throughout the body as nature intended. It is inflammation that causes cholesterol to become trapped.

Inflammation is not complicated — it is quite simply your body’s natural defence to a foreign invader such as a bacteria, toxin or virus. The cycle of inflammation is perfect in how it protects your body from these bacterial and viral invaders. However, if we chronically expose the body to injury by toxins or foods the human body was never designed to process, a condition occurs called chronic inflammation. Chronic inflammation is just as harmful as acute inflammation is beneficial.’1

And so on and so forth. More recently, a friend and fellow cholesterol sceptic, Aseem Malhotra, was lead author on an article in the British Journal of Sports Medicine entitled: ‘Saturated fat does not clog the arteries: coronary heart disease is a chronic inflammatory condition, the risk of which can be effectively reduced from healthy lifestyle interventions.’

A major statin study called JUPITER, was designed to look at lowering C-reactive protein with rosuvastatin, to see if this would lower the risk of CVD – in those with low or normal cholesterol levels. C-reactive protein (CRP) is a non-specific marker of inflammation. To quote the lead investigator:

The recent JUPITER trial demonstrated that potent statin therapy reduces by 50 % the risk of heart attack and stroke among men and women with low levels of low-density lipoprotein (LDL)-cholesterol who are at increased vascular risk due to elevated levels of C-reactive protein (CRP), a biomarker of low-grade systemic inflammation. In JUPITER, both absolute risk and the absolute risk reduction with statin therapy were related to the level of CRP, whereas no such relationship was observed for LDL-C.’2

I could find another ten thousand papers all stating that CVD is caused by inflammation. Case proven? Well, the case is certainly proven, beyond doubt, that atherosclerosis is strongly associated with inflammation in the arterial wall. To which my response would be… and so what exactly?

If you twist your ankle, and tear ligaments, you will also find a great deal of inflammation in the surrounding area. You would, however, be stretching reality to suggest inflammation is the underlying cause of ankle ligament damage. I suppose you could try.

In my simple little world, inflammation is a result of underlying damage. It is not, and cannot be the underlying cause. Inflammation is a manifestation of the body attempting to heal itself. In fact, whenever I see the word inflammation, I mentally replace it with the word ‘healing.’ For many years I have smiled enigmatically at the widely accepted advice following a badly sprained ankle. RICE (Rest, Ice, Compression, Elevation). These are all ways of reducing inflammation, sorry, healing.

Just looking at the ‘I’ in RICE. Ice:

Ice works by decreasing the blood flow to an area, thus temporarily diminishing the swelling and inflammation that accompanies most injuries —- (when the tissue re-warms … the inflammatory process resumes). But in the 1970s we knew very little about the healing process.   We did not understand that inflammation is actually a very important initiating event of the overall healing process.

When you are injured, the blood vessels to the area dilate. That causes the swelling and warmth you notice. The increase in blood flow brings with it very potent chemicals, proteins and cells.   Those chemicals and cells set off a cascade of reactions that we refer to as inflammation. More importantly, this is also what initiates the HEALING process.   Yes, inflammation is a necessary part of the healing process. The inflammation chemicals send a message to other cells to come to the injured area… they also wake up sleeping or dormant cells already residing in the area of the injury. Those cells in turn start to repair the ligament, muscle or skin at the site of injury.’3

Finally, conventional sports medicine catches up with Chinese traumatology. In Chinese medicine, we NEVER recommend ice for injuries. Simple physics will tell you that ice applications will constrict blood vessels which will reduce blood flow to the injury, meaning less waste products removed and less nutrition delivered therefore slower healing.’4

I say, reduce inflammation at your peril. You may reduce the swelling, and some of the bruising, and things will certainly look less ‘damaged’. But, again, so what. Two billion years of evolution have created some pretty effective healing processes, which we also call inflammation. Interfere with inflammation, and the results are predictable.

The most powerful anti-inflammatory agents known to man are corticosteroids, so called as they are all synthesized around the base compound, cortisol (a corticosteroid). Medically they are used in a number of auto-immune/inflammatory conditions, ranging from rheumatoid arthritis, ulcerative colitis, eczema, lupus, transplant organ rejection and suchlike [Asthma is a bit different].

In these conditions, there is a rationale for reducing inflammation. Here, we have the body ‘seeing’ various proteins as alien, and attacking them, through an ‘auto-immune’ response. Yes, there is inflammation. However, this is not the body trying to repair itself. This is the immune system causing damage, by attacking the body itself, with resulting inflammation. In short, do not confuse inflammation with inflammation.

However, if inflammation were the underlying cause of CVD, then corticosteroids should reduce the risk of CVD, as they are the most potent anti-inflammatories known to man. But they very much do not. A paper was published recently, called ‘Can machine-learning improve cardiovascular risk prediction using routine clinical data?’ A fascinating paper indeed. The purpose was, as follows:

‘Current approaches to predict cardiovascular risk fail to identify many people who would benefit from preventive treatment, while others receive unnecessary intervention. Machine-learning offers opportunity to improve accuracy by exploiting complex interactions between risk factors. We assessed whether machine-learning can improve cardiovascular risk prediction.’

I have not written about this paper before, although it identified LDL as completely irrelevant in predicting CVD risk, and the risks it did identify were almost completely different from those in the current risk calculators. In fact, the number one risk factor of cardiovascular risk was Chronic Obstructive Pulmonary Disease (COPD). I have never seen this on any risk calculator before, and I am trying to digest the implications.

However, getting back on track, the main point of interest here is looking at number three on the list of factors that can increase CVD risk:

Oral corticosteroid prescribed

At number eight:

Immunosuppressant prescribed

Immunosuppressants are also designed, effectively, to impair the inflammatory response. They are used in much the same sort of conditions as steroids. In fact, corticosteroids could also be termed immunosuppressants.

The highly damaging effect of corticosteroids, or other drugs designed to suppress the immune response, should not really come as any surprise. There is a medical condition called Cushing’s disease, in which too much cortisol is produced by the adrenal glands. The impact of Cushing’s disease on CVD is to increase the risk by, at least, 500%. 5

Other anti-inflammatory drugs have similar, if less spectacular effects, on CVD risk. The FDA recently increased the warning level on non-steroidal anti-inflammatory drugs (NSAIDs). Drugs such as ibuprofen, naproxen, diclofenac.

The FDA is strengthening an earlier warning about the cardiovascular safety of non-aspirin non-steroidal anti-inflammatory drugs (NSAIDs), both prescription and non-prescription, the agency said Thursday. After a comprehensive review of new safety information, the FDA is requiring updates to the labels of all prescription NSAIDs to reflect recent information on risk of heart attack and stroke. Over-the-counter non-aspirin NSAIDs already contain some safety information, but the labels on these drugs will also require an update, said the FDA in its announcement posted online.

The new labels for prescription NSAIDs should contain the following information, according to the FDA:

  • The risk of heart attack can occur within weeks of starting an NSAID, and that risk may increase with longer use.
  • The risk seems to be higher at higher doses.
  • It’s not clear if the risk of heart attack and stroke is the same for all NSAIDs.
  • The drugs can raise the risk of heart attack or stroke in both patients with a risk of heart disease and patients without.
  • Patients with heart disease or risk factors for it are at a greater risk of heart attack or stroke following the use of NSAIDs, because they have a higher risk at baseline.
  • There is also an increased risk of heart failure for patients using NSAIDs.6

Of course, it can be argued, and it has, that steroids and non-steroidal anti-inflammatory agents have other potentially damaging effects on the CVD. Whilst this is undoubtedly true (to an extent), you would still not expect agents that are, primarily, anti-inflammatory, to vastly increase the risk of CVD. If CVD is an inflammatory disease.

Personally, think that the science here has been done. Agents designed to reduced inflammation all greatly increase the risk of CVD – from moderately to spectacularly*. Thus, whilst it is true that you can find inflammation within arteries where atherosclerosis is developing, this DOES NOT mean that the inflammation is causing the problem.

What you are seeing is the body trying to heal damage, and then getting cause and effect twisted through one hundred and eighty degrees. ‘That’s looks abnormal, let’s get rid of it’. A pretty good summary of a great deal of medical research over the last few hundred years, I suppose.


1: https://www.sott.net/article/242516-Heart-surgeon-speaks-out-on-what-really-causes-heart-disease

2: https://www.ncbi.nlm.nih.gov/pubmed/23225175

3: http://www.howardluksmd.com/orthopedic-social-media/ice-ice/

4: http://www.drmirkin.com/fitness/why-ice-delays-recovery.html

5: https://www.ncbi.nlm.nih.gov/pubmed/8187313

6: https://www.medpagetoday.com/publichealthpolicy/fdageneral/52530

*aspirin is the exception. However, aspirin has strong anti-coagulant effects. It stops platelets sticking together. In this way, the anti-coagulant effects of aspirin, outweigh the damaging anti-inflammatory effect.

Mike Cawdery – a tribute

It is not often you are passed such terrible news. But sadly, Mike Cawdery, a regular and highly impressive contributor to this blog, was murdered along with his wife, on the 26th of May.

‘The devastated family of an elderly couple murdered in their home on Friday say they are struggling to understand what has happened. Michael and Marjorie Cawdery, both aged 83, were the victims of a brutal knife attack leaving them both with fatal injuries.

A family spokesperson said: “The awful and incomprehensible events of Friday 26 May have deprived our family of two wonderful people Michael and Marjorie who were our father, mother, brother, sister and grandparents. “We thank the police for their prompt response and professional actions. We also thank everyone who has expressed sympathy in whatever way and offered help.”

Mr Cawdery, a retired veterinary surgeon who trained at Trinity College Dublin, and his wife Marjorie, were attacked in their home and died at the scene.’ http://www.belfastlive.co.uk/news/belfast-news/marjorie-michael-cawdreys-family-say-13101196

I found out about this from his GP, who was kind enough to e-mail this news. He knew that Mike posted comments to this blog on a very regular basis, and he thought that I should know what had happened. Thank goodness, he did, otherwise I would have had no idea. I would have simply wondered why Mike Cawdery, our statistician par excellence, had fallen silent. [In truth, other people have since, e-mailed me with the news].

I never met him, I never spoke to him, but I believe that I – and other readers of this blog- knew him well. He seemed ferociously intelligent, and still driven to do what he thought was right. I felt he was an admirable man. Funny how the Internet brings people together into a ‘family’ that converses and argues and supports and occasionally falls out.

In the last month, Mike Cawdery posted 117 comments on the blog, all of them were worth reading. Here was one of his last ever posts.

‘May I plead with you all to keep a watch on the BMJ and to use their RAPID RESPONSE system just as one uses Dr Kendrick’s comment section. Many of the comments and references cited here are equally valid on some relevant editorials, news items and even reports. All one has to do is give name and rough address and answer a question or two. Open to all including doctors.

May I take this opportunity to suggest that any one, a patient, carer and particularly doctors as the ultimate carers sign up as “patient reviewers”. Interesting and gets patients and carers involved. Too long have patients been treated little better than pets (may be with less respect??). It is people like Dr Kendrick that have given patients an outlet to express their views and knowledge.’

At 83, he was still active, still getting involved, and still trying to make the world a better place. Mike, you will be missed, by us all.

Cholesterol lowering – the end of the beginning?

I have been somewhat silent over the last two or three weeks on this blog. The word ‘swamped’ springs to mind. The main swamping thing (alongside work and suchlike) that I have been doing is to analyse the Lancet paper which claimed that, basically, statins cause no adverse events. Professor Peter Sever (corresponding author), followed up the publication of this paper with statements such as:

‘While statins do have some potentially serious side effects, including a slightly raised risk of developing type II diabetes and, very rarely, a potentially fatal muscle condition known as rhabdomyolysis, Sever said that the Medicines and Healthcare Products Regulatory Agency (MHRA) should remove warnings of side-effects including muscle pain and weakness, sleep disturbance, erectile dysfunction and problems with cognitive function” (https://www.theguardian.com/society/2017/may/02/statin-side-effects-down-to-negative-expectations-not-the-drugs-nocebo).

In an interview with UK national newspaper, The Daily Telegraph, Peter Sever went on to say that:

‘There are people out there who are dying because they’re not taking statins, and the numbers are large, the numbers are tens of thousands, if not hundreds of thousands.

He said it was a “tragedy” akin to the MMR scandal that high risk patients had been deterred from taking drugs which could save their lives. Urging patients not to “gamble” with the risk of heart attacks and strokes, he said “bad science” had misled the public, deterring many from taking life-saving medication” (http://www.telegraph.co.uk/news/2017/05/03/statins-myth-thousands-dying-warnings-non-existent-side-effects/).

And so on and so forth. This paper, as you may expect, has been picked up with great enthusiasm by the mainstream medical media, and other doctors. Here is a Dr John Mandrola writing a Commentary in Medscape.

The frequency of muscle symptoms with statins is hotly debated. Randomized controlled trials (RCTs) in which patients don’t know whether they are taking the statin or a placebo report nearly identical rates of muscle-related adverse events. Observational studies, however, report higher rates of statin muscle complaints.

As a practicing doctor, I have always felt the truth lies closer to the observational data. A study published recently in the Lancet suggests I may be wrong. This new study, which has impeccable methods, suggests statin muscle complaints stem not from human muscles but from the human brain. In the Lancet paper, researchers took advantage of two distinct parts of the primary prevention ASCOT-LLA trial.

In the first part of ASCOT-LLA, more than 10,000 people were randomized to either atorvastatin 10 mg daily or placebo in a double-blinded fashion. After completion of the blinded phase of ASCOT-LLA, study participants were invited to take part in a nonblinded and nonrandomized extension study in which they could take atorvastatin open label.

The results turned on whether people knew they were on the statin. In the double-blinded phase of the trial, muscle symptoms occurred at the same rate—2.0% per year in both the statin and placebo groups. In the second phase of the trial, when people knew they were on the statin, side effects occurred at a higher rate (1.3% per year) in the statin group vs the placebo group (1.0% per year). This difference reached statistical significance (hazard ratio 1.41, CI 1.10–1.79; P=0.006).

These are remarkable observations, which are hard to dispute. In an accompanying editorial, two Spanish authors emphasized the obvious strengths of this paper: these were the same patients in both phases, and there was no run-in period in which patients intolerant to statins were excluded’ (http://www.medscape.com/viewarticle/879762_print).

So, this is a slam dunk. Right?

Well, I have taking a pretty forensic look at the Lancet Paper. It has the snappy title. ‘Adverse events associated with unblinded, but not with blinded, statin therapy in the Angle-Scandinavian Cardiac Outcomes Trial – Lipid Lowering Arm (ASCOT-LLA); a randomised double-blind placebo-controlled trial and its non-randomised non-blind extension phase.’ May 2nd 2017’.

You may not be surprised to know that Professor Sir Rory Collins was a co-author.

I believe it may have a weakness – or two – or three – or … you get the picture. However, if you are going to attempt to argue against such a paper, or pick holes in it, you need to study it with extreme care, to make sure that you have your facts absolutely right.

Then you need to look at all other associated papers around the entire ASCOT study. For example, I have been amusing myself, or not, by studying ‘Rationale, design, methods and baseline demography of participants in the Anglo-Scandinavian Cardiac Outcomes Trial’…. And a few other papers as well. I have also been speaking to some very bright people who understand exactly how clinical studies are done, how adverse events are reported and recorded. It is an arcane and opaque world indeed.

You need to try to understand comments such as this, in the paper:


After randomisation, study participants were scheduled to be seen at 6 weeks and 3 months and then at 6 monthly intervals thereafter during both the blinding randomised and non-blinding randomised phases of the ASCOT-LLA (until the ASCOT-BPLA completed – yes this was two trials in one). At each study visit all adverse events (AEs) reported by participants were recorded by the study team in the case report form. Specific questions relating to any putative AEs were not asked at these visits.

Reports of AEs by the study participants were initially recorded verbatim and subsequently classified with use of the Medical Dictionary for Regulatory Activities into 26 separate system organ class (SOC) groups, 2288 unique preferred terms, and 5109 separated low-level terms…..’

Now, I defy anyone to make sense of that. [I had no idea what the word putative meant in this context. Having looked it up, I am none the wiser]. Either adverse reports were initially recorded onto a case report form, or comments were recorded verbatim and subsequently classified…. You can do one, or the other, not both. As for attempting to reclassify verbatim reports, in several different languages, fifteen years later…. Hmmmmm.

However, whilst trying to get my head around that, my interest was piqued by those involved in this data analysis. It turns out that the lead author, Ajay Gupta, was provided with financial support from the ‘Foundation for Circulatory Health’. I had never heart of this ‘charity’ before. So I tried to find out how it was funded – always tricky. You can usually find out who provides the dosh, but not how much.

Looking at their accounts, the foundation for Circulatory Health seems to be funded largely (almost entirely?) by the pharmaceutical industry. Companies which include, guess who, Pfizer, who funded the initial ASCOT study and who also funded the recent Lancet Nocebo paper.

Supporters (of the Foundation for Circulatory Health (http://www.ffch.org/supporters.html):

  • Pfizer
  • Sanofi-Aventis
  • Menarini
  • Novartis
  • Medtronic
  • Boston Scientific
  • Pulsecor
  • Patients attending the Hypertension and Cardiology Clinics

Digging further it then turned out that that Peter Sever and Neil Poulter (key authors on the ‘nocebo’ paper) are also directors of the Foundation for Circulatory Health, which Funded Dr Gupta to work on the Nocebo paper – supported by Pfizer. Well, who’d a thunk? [Well, me actually].

Neil Poulter is a very well-known researcher in CV medicine, well known to those who keep track of such things. His name turns up all over the place. Here was his declaration of interest statement in the Lancet paper:

Neil Poulter’s institution (Imperial College London) held a grant for the conduct of the Anglo-Scandinavian Cardiac Outcomes Trial in the UK and Ireland and he has also received a speaker’s honoraria from Pfizer outside the submitted work. He is also a recipient of the National Institute for Health Research Senior Investigator Award to Imperial College Healthcare NHS Trust.’

Sounds quite reasonable(ish) and above board. However, compare this with a conflict of interest statement from 2008: ‘Poulter disclosed receiving ad hoc payments to appear on advisory boards/deliver lectures for “all the major pharmaceutical companies that produce major agents in hypertension and CV medicine” and receiving grant income from Pfizer and Servier’(http://www.medscape.com/viewarticle/790044?t=1#vp_2).

Perhaps he just forgot that he had received money from all the major pharmaceutical companies that produce major agents in hypertension and CV medicine. Must be hard to keep track of what you have previously disclosed. Is there a time limit on conflicts of interest?

For now, I shall continue to dig. I shall continue to analyse the paper. Watch this space. It is all rather time consuming, but it may turn out rather well in the end. Although, I suppose, that rather depends on which side you are on in this debate.

It’s official, statins do not have any side effects

Some of you will have noted that researchers have now decided that statins do not have any side effects at all. To be pedantic, the correct term is not side-effects, it is drug related adverse events. A side effect can be positive, or negative.

In order to prove that statins cause no adverse events, a paper was published in the Lancet entitled: ‘Adverse events associated with unblinded, but not with blinded, statin therapy in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid-Lowering Arm (ASCOT-LLA): a randomised double-blind placebo-controlled trial and its non-randomised non-blind extension phase.’

A virtually impenetrable title which could mean almost anything. But the key message can be found here:

‘These analyses illustrate the so-called nocebo effect, with an excess rate of muscle-related AE reports only when patients and their doctors were aware that statin therapy was being used and not when its use was blinded. These results will help assure both physicians and patients that most AEs associated with statins are not causally related to use of the drug and should help counter the adverse effect on public health of exaggerated claims about statin-related side-effects.’

Funding: Pfizer, Servier Research Group, and Leo Laboratories

Statement by authors in original ASCOT study [The Lancet vol 361 April 5th 2003. Pp1149-1158] ‘The Anglo-Scandinavian Outcomes Trial (ASCOT) is an independent, investigator-initiated and investigator-led multicentre, randomised trial designed to compare two antihypertensive treatment strategies for the prevention of CHD events…

Funding of the original ASCOT study: Pfizer, Servier Research Group and Leo Laboratories

The ASCOT study was published over fifteen years ago.

There was a lot of noise about this study on the radio, newspaper and television. At least there was in the UK. Professor Peter Sever, one of the authors, and a key investigator, stated on the radio, that the inserts warning of drug related adverse effects should be removed from the packaging, as they simply encourage patients to believe that they are suffering from adverse effects. He also stated that statins caused muscle problems in less than one in ten thousand patients.

I tend to disagree with him. I was asked to be interviewed on various radio stations, including BBC radio Scotland, and to write a newspaper article for the Scotsman newspaper. It went as follows:

The Great Statin Con

Yesterday, I was asked to appear on various programmes to discuss a study ‘proving’ that statins cause no side-effects at all. Or, at most, they may cause muscle pains in around one in ten thousand people, no more. At the same time, statins save thousands of lives a year. Therefore, everyone should take them, and patients should ignore scaremongering doctors – such as me I suppose – who state that side-effects are common, and potentially serious.

On the radio, Professor Peter Sever, the lead author of the study, suggested that the leaflets warning of side effects should be removed, because once a patient reads that there may be side effects, they will be far more likely to suffer from them, and report them. The so-called ‘nocebo’ effect. The opposite of the placebo effect, whereby people taking medicines think they will get better, or that their pain will be reduced.

There is no doubt that the nocebo effect is real, although the placebo effect is also real, so do these two effects not just cancel each other out? This is a difficult area of medicine, disentangling what is real, from what is imagined.

However, I watched my father in law become unable to walk, whilst taking statins. We were pushing him around in a wheelchair until, eventually, he agreed to stop his statins. At which point he became able to walk a good distance again, and even climb stairs again. A ‘nocebo’ effect? All in the mind? No, of course not.

I had a patient with such severe abdominal pains that she was going to undergo an investigative laparotomy to establish what was causing them. No investigations had revealed anything. I suggested she stop the statins and the pains were completely gone in two days. All in the mind? I have spoken to many other GPs who have reported seeing side effects in many patients.

I suppose if you are trying to push statins as hard as possible, and you built your academic reputation on running trials on statins, you will naturally want to push them as hard as possible. Some ‘experts’ have even suggested putting statins in the water supply.

But this latest report pushes things to a completely ridiculous point. Can I, as a GP, simply tell patients reporting side-effect that ‘you do not have a side effect, they do not exist, it is simply in your mind.’ No, this would be completely ridiculous, and a total denial of your job, which is to listen to what patients tell you. Not to take a horribly, I know best, paternalistic position.

On the other hand, the benefits of statins have been hyped to an almost completely ridiculous degree. We are told that they reduce the risk of having a heart attack by 30%, which sounds highly impressive, if you, like almost everyone, including me, do not understand statistics.

The reality is, that unless you have had a previous heart attack, statins have no effect on overall mortality. To put that another way, they don’t save lives. They don’t even prevent heart attacks or strokes in women with no previous history of heart disease.

The statistic you really want to know about statins is the following. If you have had a heart attack, or stroke, and take a statin for five years, you will increase your life expectancy by 4.2 days. Balance that against a twenty per cent chance of having side effects, some of which are very unpleasant and long-lasting, and you can see why I am not a fan of statins.

Currently I am sifting through the original ASCOT paper to find out exactly what they did study, and what they found, and suchlike. The problem with trying to get to grips with research like this is that there are figures, and more figures, and data and exclusion criteria, and things that are not fully explained. So, it is difficult to make any statement about this entire saga, without many hours of detailed research.

However, I can certainly comment on the key finding from the recent Lancet ‘nocebo’ paper. Key or not, it is the finding that they made the most noise about.

‘During the non-blinded non-randomised phase, muscle-related AEs (adverse events) were reported at a significantly higher rate by participants taking statins than by those who were not (161 [1·26% per annum] vs 124 [1·00% per annum]; 1·41 [1·10–1·79]; p=0·006).’

To translate 161 people (out of more than six thousand) complained of muscle pain whilst taking the statin, and 124 people taking a placebo complained of muscle pain. In total 37 more people complained of muscle pain on the statin. This is not, what I would call, a lot. It was an absolute increase, in the risk of reporting adverse effects, of 0.26%.

Compare and contrast this figure with the findings of the ‘Statin USAGE’ study. As far as I know, this was the largest study to look at why people take, then stop taking, statins:

‘The USAGE survey – “Understanding Statin use in Ama and Gaps in Education” – is the largest known cholesterol survey conducted in the U.S., involving more than 10,100 statin users. The USAGE survey explores patient perceptions, attitudes, behaviors and concerns about statins, the most commonly prescribed medications to treat high cholesterol.’ http://www.statinusage.com/Pages/about-survey-respondents.aspx

A number of things were found. The most important of which, is just how many people stopped taking their statins after one year. A pretty staggering 75%. Why did they stop?

‘More than six in ten respondents (62%) said they discontinued their statin due to side effects, with the secondary factor (17%) being medication cost. Only 12% of respondents cited lack of efficacy in cholesterol management as a reason for stopping their medication. On average, respondents who experienced side effects due to their statin stopped after trying two different statins.

Three out of ten respondents experienced side effects of muscle pain and/or weakness, and 34% stopped taking their statin because of these side effects without consulting with their doctor.’

So, on one hand, what the Lancet study found was that 0.26% extra patients reported muscle pain – when they knew they were on a statin. On the other hand, the Statin USAGE survey found that 30% of people experience muscle pain and/or weakness when on a statin. Now, try to get those two figures to match up.

You could argue that the nocebo effect can only account for 0.26% of adverse effects. Therefore, the other 29.74% (30% in the Statin USAGE study – 0.26% nocebo effects) represents the true rate of adverse effects. You could argue that randomised controlled clinical trials do not reflect the experience of taking medication in the real-world environment. You could say that you can believe one of these studies, but not both.

On the other hand, you could move sideways a bit, and wonder why researchers suddenly decided to ‘data dredge’ a twenty-year-old study – not set up to look at adverse effects as a primary end-point – to prove that statins do not have any adverse effects. You could then look at who funded that research and you could ask yourself why would a company currently being sued in the US for not highlighting the adverse effects of statins, decided to use a study to prove that statins do not have adverse effects.

Alternatively, you could ask people who have taken statins, whether they suffered adverse effects, and try to match the number who claim that they do, with the one in ten thousand figure of Professor Peter Sever. And good luck with that. It is hard, I find, not to think that ‘he who pays the piper calls the tune.’

Tim Noakes found not guilty – of something or other

Many years ago I started looking at research into cardiovascular disease. Almost as soon as I began my journey, I came to recognise that many facts I had been taught in medical school were plain wrong. This did not come as a great surprise. Anyone familiar with the history of scientific research will soon find out that widely established facts are often not ‘true’ at all. My mother still likes to tell me that when she was at school it was taught, with unshakeable confidence, that there are 48 human chromosomes. There are 46.

In addition, it became clear that, not only were certain key facts wrong, there seemed to be a co-ordinated effort to attack anyone who dared to challenge them. One stand out example of such an attack was what happened to John Yudkin, the founder of the nutrition department at the University of London’s Queen Elizabeth College.

He did not believe that saturated fat was to blame for heart disease, the idea at the centre of the diet-hypothesis. At the time, this theory was being relentlessly driven by Ancel Keys, and it had gained widespread acceptance amongst the scientific community. In 1972 Yudkin wrote the book ‘Pure white and deadly’ in which he outlined why sugar was the probable cause of heart disease, not fat(s). He was then ruthlessly attacked. As outlined by the Telegraph:

‘The British Sugar Bureau put out a press release dismissing Yudkin’s claims as “emotional assertions” and the World Sugar Research Organisation described his book as “science fiction”. When Yudkin sued, it printed a mealy-mouthed retraction, concluding: “Professor Yudkin recognises that we do not agree with [his] views and accepts that we are entitled to express our disagreement.”

Yudkin was “uninvited” to international conferences. Others he organised were cancelled at the last minute, after pressure from sponsors, including, on one occasion, Coca-Cola. When he did contribute, papers he gave attacking sugar were omitted from publications. The British Nutrition Foundation, one of whose sponsors was Tate & Lyle, never invited anyone from Yudkin’s internationally acclaimed department to sit on its committees. Even Queen Elizabeth College reneged on a promise to allow the professor to use its research facilities when he retired in 1970 (to write Pure, White and Deadly). Only after a letter from Yudkin’s solicitor was he offered a small room in a separate building.

“Can you wonder that one sometimes becomes quite despondent about whether it is worthwhile trying to do scientific research in matters of health?” he wrote. “The results may be of great importance in helping people to avoid disease, but you then find they are being misled by propaganda designed to support commercial interests in a way you thought only existed in bad B films.”

And this “propaganda” didn’t just affect Yudkin. By the end of the Seventies, he had been so discredited that few scientists dared publish anything negative about sugar for fear of being similarly attacked. As a result, the low-fat industry, with its products laden with sugar, boomed.’1

Let us scroll forward some forty years or so, to Professor Tim Noakes. Regular readers of this blog will have heard of Tim Noakes who is, to quote Wikipedia.. ‘…a South African scientist, and an emeritus professor in the Division of Exercise Science and Sports Medicine at the University of Cape Town.

At one time he was a great supporter of the high carb low fat diet, and even helped to develop high carb energy foods for long distance runners. However, for various reasons (most importantly studying the science again) he completely changed his mind. He is now a very well-known proponent of the high fat, low carb (HFLC) diet, as a way to treat obesity and type II diabetes – and improve athletes’ performance.

A couple of years ago, he was dragged in front of the Health Professions Council of South Africa (HPCSA) after being charged with unprofessional conduct for providing advice to a breast-feeding mother in a tweet. “Baby doesn’t eat the dairy and cauliflower. Just very healthy high fat breast milk. Key is to wean [sic] baby onto LCHF.”

The case against him was obviously, and almost laughably, bogus. The HPCSA did not even (as I understand it) have any guidelines on what constitutes an on-line doctor patient relationship. You could make the case that it is difficult to find someone guilty of breaching rules, when there are no rules. Despite this, I thought they would get him on some technicality or other.

Just as happened to Gary Fettke in Australia

‘Prominent Launceston surgeon Gary Fettke has been banned from giving nutritional advice to his patients or the public for the rest of his medical career. He was recently notified by the Australian Health Practitioner Regulation Agency that he was not to speak about nutrition while he remained a medical practitioner.

Dr Fettke is a strong advocate for a low carb, high fat diet as a means to combat diabetes and ill-health. AHPRA told Dr Fettke “there is nothing associated with your medical training or education that makes you an expert or authority in the field of nutrition, diabetes or cancer”. It told him the ban was regardless of whether his views on the benefits of the low carbohydrate, high-fat lifestyle become accepted best medical practice in the future.’ 2

Lo, it came to pass that Gary Fettke cannot even talk about a high fat diet, even if it becomes accepted best medical practice…. Ho hum, now that really makes sense. At this point you may possibly, just possibly, see some parallels between Tim Noakes, an advocate of the high fat low carb diet in South Africa, and Gary Fettke, an advocate of the high fat low carb diet in Australia. Also, of course, John Yudkin, who was attacked and effectively silenced by the sugar industry many years ago.

This would be, I suppose, the very same sugar industry who paid Harvard researchers in the 1960s to write papers demonising saturated fat and extolling the virtues of sugar.

‘Influential research that downplayed the role of sugar in heart disease in the 1960s was paid for by the sugar industry, according to a report released on Monday. With backing from a sugar lobby, scientists promoted dietary fat as the cause of coronary heart disease instead of sugar, according to a historical document review published in JAMA Internal Medicine.

Though the review is nearly 50 years old, it also showcases a decades-long battle by the sugar industry to counter the product’s negative health effects.

The findings come from documents recently found by a researcher at the University of San Francisco, which show that scientists at the Sugar Research Foundation (SRF), known today as the Sugar Association, paid scientists to do a 1967 literature review that overlooked the role of sugar in heart disease.3

A pattern does appear to emerge does it not?

With my views on diet, and cholesterol, and heart disease, and suchlike, I have often been accused of being a conspiracy theorist – which is just another way of saying that I am clearly an idiot who should shut up. I simply smile at people who tell me this, and say nothing. However, my motto is that…‘Just because you’re paranoid, it doesn’t mean they are not out to get you.’ In the case of the High Fat Low Carb advocates, they are out to get you, and there truly is a worldwide conspiracy to attack any silence anyone who dares criticise sugar/carbs in the diet.

The attacks and distortions have not stopped with the ‘Harvard researchers’, or John Yudkin, or Gary Fettke or Tim Noakes, they continue merrily today. In the Sunday Times of April 23rd 2017 an article appeared, entitled ‘Kellogg’s smothers health crisis in sugar – The cereals giant is funding studies that undermine official warnings on obesity.’ Just to choose a few paragraphs.

One of the food research organisations funded by Kellogg’s is the International Life Sciences Institute (ILSI). Last year if funded research in the Journal Annals of Internal Medicine that said the advice to cut sugar by Public Health England and other bodies such as the World Health Organisation could not be trusted.

The study, which claimed official guidance to cut sugar was based on “low quality evidence”, stated it had been funded by an ILSI technical committee. Only by searching elsewhere for a list of committee members did it become clear that this comprised 15 food firms, including Kellogg’s, Coca-Cola and Tate and Lyle.

In 2013 Kellogg’s funded British research that concluded “regular consumption of cereals might help children stay slimmer.” The study, published in the Journal Obesity Facts relied on evidence from 14 studies. Seven of those studies were funded by Kellogg’s and five were funded by the cereal company General Mills.

And so on and so forth. Interestingly, no-one from the world of nutrition has suggested that Kellogg’s should be dragged into court for distorting data, trying to discredit honest researchers, and paying ‘experts’ to speak on their behalf. It is the Golden Rule, I suppose. He who has the gold, makes the rules.

This all has obvious parallels to the tricks the tobacco industry got up to over the years. They did everything they could to hide the fact that cigarettes cause heart disease and cancer. Now the sugar industry, and those selling low fat high carb products, are trying to hide the fact that sugar/carbs are a key cause of obesity and type II diabetes.

And the techniques used by the sugar/cereal/high carb companies are drearily familiar – and sadly still highly effective. As with Yudkin, Noakes and Fettke, go for the man, not the ball (discredit the person, not their data). Dismiss any damaging evidence that does manage to emerge as ‘weak’, pay your own experts to write bogus reports, and create uncertainty everywhere. Some people should be very ashamed of themselves indeed. Instead, I suppose, they are getting massive bonuses.

The nutrition society of South Africa said, in response to the Noakes judgement: “We are glad that the hearing has been finalised after almost three years, unless there is an appeal. The judgement, however, has absolutely no bearing on the current or future status of nutrition or the dietary guidelines in South Africa.’4 So there, nyah, nyah, nyah. Any apology to Tim Noakes? No. Any apology for wasting huge sums of money on a court case they lost? No. Just a threat that they may appeal. They are not going to change a thing.

So, whilst Tim Noakes won his case, any scientist looking on gets a very clear message. If you say things we don’t like, we will attack you and drag you through court and make your life a living hell for three years. Now, that is how you silence people, just as they silenced Yudkin nearly forty years ago.


1: http://www.telegraph.co.uk/lifestyle/wellbeing/diet/10634081/John-Yudkin-the-man-who-tried-to-warn-us-about-sugar.html

2: http://www.couriermail.com.au/news/national/surgeon-gary-fettke-banned-for-good-on-food-advice-by-regulatory-body/news-story/d973faa72dc64836f2209469a67592d5

3: https://www.theguardian.com/society/2016/sep/12/sugar-industry-paid-research-heart-disease-jama-report

4: https://www.pressreader.com/south-africa/the-sunday-independent/20170423/281681139761415

What causes heart disease part XXIX, part B.

Alcohol – an update

My last blog on alcohol caused somewhat of a stir, as I suspected it would. To those who did not read it, I recommended that, from a cardiovascular health point of view, those who do not drink alcohol should start. I recommended this because there is strong evidence that moderate alcohol consumption significantly reduces the risk of cardiovascular disease – and can also reduce overall mortality/increase life expectancy.

There were many objections, scientific and, in some ways, moral. Because of this, I felt the need to go over the area again, which is a bit unusual for me. I think there were three main objections that were raised:

1) People who do not drink are not drinking because they have illnesses that have stopped them drinking, therefore they are less healthy than moderate drinkers to begin with. Ergo, you are not comparing apples with apples.

2) None of the studies have been randomised controlled studies, they are purely observational.

3) If people who do not drink, are advised to start drinking, a proportion of them will end up drinking too much and will damage their health.

1) People who do not drink are not drinking because they have illnesses that have stopped them drinking, therefore they are less healthy than moderate drinkers.

This is probably the easiest objection to refute. The massive one million patient study in the BMJ, that I quoted in my previous blog, looked at this potential confouder1. By which I mean that the researchers took care to separate out those who had drunk previously, from those who had never drunk.

Whilst the BMJ study looked at all sorts of outcomes, I shall restrict myself to two here. The ones that are most important. Namely, fatal cardiovascular disease (CVD), and all-cause mortality.

Increased risk of fatal CVD vs. moderate drinking

  • Non-drinker = 1.32 (32% increased risk)
  • Former drinker = 1.44 (44% increased risk)

Increase risk of all-cause mortality vs. moderate drinking

  • Non-drinker = 1.24 (24% increased risk)
  • Former drinker = 1.38 (38% increased risk)

As you can see, there is some merit to the argument that former drinkers are less healthy than never drinkers. However, if you remove former drinkers from the equation, non-drinkers remain at a significantly increased risk of CVD, and overall mortality, compared to moderate drinkers.

2) None of the studies have been randomised controlled studies, they are purely observational.

I cannot really argue too powerfully against this objection, for it is true. No-one has, to the best of my knowledge, taken a large number of people and split them into two groups. One to drink alcohol, the other to abstain. Then, after ten years or so, find out which group did better. I should point that that whilst such a trial could be randomised, and controlled, there is no way it could be placebo controlled, or double blinded (double blinded means that neither the participant or the researcher would know if the participant was, or was not, drinking alcohol). Thus, no perfect trial could ever be done.

The reality is that, in medicine and medical research you just have to roll with what you have got. In recent years, I have seen a growth in a research fundamentalist belief, which is that the only way you can ever prove anything is through a randomised placebo controlled double blind study, with tens of thousands of people in each arm.

I find this somewhat strange, and more than slightly strange. The vast, vast, majority of things that are done in medicine, have no randomised controlled studies to support. Do you think penicillin was subjected to a controlled study before it was used? Um, no. Do you think hip replacements have ever been studied in a randomised controlled trial? Um, no. Do you think breast cancer screening has ever had a single randomised controlled study? Coronary artery bypass grafts, Um, no. Almost any surgical intervention you think of. Um, no. Vaccines. Um, no.

I could keep going on for a long, long, long time on the interventions that are widely accepted, which have far less evidence to support them, than the benefits of moderate alcohol consumption. I worked with the European Society of Cardiology (ESC) at one time, to develop their educational website. By our estimate, around 13% of cardiology interventions had any evidence at all to support them (let alone randomised controlled studies). This statistic may have improved, but I doubt it.

Much of practice was defined by ‘expert consensus’. Which I also call ‘Eminence Based Medicine’.

My view is that, to dismiss all evidence that does not fit into the ‘gold standard’ of placebo controlled randomised double blind study is easy – of course. But if you are going to do this, you would have to also dismiss all the evidence on smoking and lung cancer – for example.

Certain things will never, can never, be studied in randomised controlled studies. So, we must look at best possible evidence, and make decisions based on that. Otherwise what are we to do? We can chuck all antibiotics, and vaccines, into the dustbin for starters.

3) If people who do not drink, start drinking, a proportion of them will end up drinking too much and damaging their health.

This last point is clearly the most difficult to argue against. What if I do advise people to start drinking and a significant proportion become alcoholics. Will I not have done great harm? Well, of course, this is not impossible. However, I consider it highly unlikely, because non-drinkers are almost certainly a very different group of people from already drinkers. Probably highly health conscious and well controlled people.

To be frank, I suspect many non-drinkers do not drink for moral and religious reasons, and would not start drinking even if the evidence for benefit was utterly overwhelming. [Nor would I expect them to, some things are not up for discussion].

There is also the counterargument that if many were to benefit from moderate drinking, this would counterbalance the possible harm of a smaller number becoming alcoholics. The greater benefit for the greater number? Yes, I know, this is one definition of fascism, but hey…

I shall move to the example of sunbathing here. Yes, it is true that sun exposure can cause various skin cancers (probably not malignant melanoma). Doctors urge everyone to avoid the sun, almost at any cost. In doing so, we will prevent a certain amount of skin damage, and certain skin cancers. This is, of course, good.

However, as a study from Sweden demonstrated, the trade-off is that you are far more likely to die from CVD, and you will also reduce your life expectancy by about the same amount as if you smoke ‘Avoidance of sun exposure as a risk factor for major causes of death: a competing risk analysis of the Melanoma in Southern Sweden cohort.’


Women with active sunlight exposure habits experience a lower mortality rate than women who avoid sun exposure; however, they are at an increased risk of skin cancer. We aimed to explore the differences in main causes of death according to sun exposure.


We assessed the differences in sun exposure as a risk factor for all-cause mortality in a competing risk scenario for 29,518 Swedish women in a prospective 20-year follow-up of the Melanoma in Southern Sweden (MISS) cohort. Women were recruited from 1990 to 1992 (aged 25-64 years at the start of the study). We obtained detailed information at baseline on sun exposure habits and potential confounders. The data were analysed using modern survival statistics.


Women with active sun exposure habits were mainly at a lower risk of cardiovascular disease (CVD) and non-cancer/non-CVD death as compared to those who avoided sun exposure. As a result of their increased survival, the relative contribution of cancer death increased in these women. Non-smokers who avoided sun exposure had a life expectancy similar to smokers in the highest sun exposure group, indicating that avoidance of sun exposure is a risk factor for death of a similar magnitude as smoking. Compared to the highest sun exposure group, life expectancy of avoiders of sun exposure was reduced by 0.6-2.1 years.


The longer life expectancy amongst women with active sun exposure habits was related to a decrease in CVD and non-cancer/non-CVD mortality, causing the relative contribution of death due to cancer to increase.2

Why do medics write in such a convoluted way? Is there a course on ‘complete obfuscation of the reader’ that I missed somewhere along the line? Anyway, the point here is that sun exposure meant you very significantly avoid CVD death and live longer (good). But, if you die, you have more chance of dying of cancer (bad?). Of course, if you reduce death from CVD you will, by default, increase the risk of dying of cancer – well you have to die of something. Less of A means more of B.

As a cardiologist once said to me. ‘My job is to keep people alive for long enough for them to die of cancer.’ Sorry, but I do love black humour.

The general point here is that you must look at the greatest benefit to the greatest number. Could I tell a lot of people to avoid drinking alcohol because some people may, I repeat may, turn into alcoholics.

I shall leave you with a quote from an article ‘Ethanol and cardiovascular diseases: epidemiological, biochemical and clinical aspects.’

Conclusion: to drink or not to drink?

‘It is not easy to answer this Hamlet’s question, because alcohol consumption is like a razor-sharp double-edged sword. Current guidelines of the American Heart Association (AHA) state that moderate alcohol consumption is beneficial for cardiovascular health, but the AHA clearly states that non-drinkers should not begin drinking alcohol in middle age due to possible counter-balancing ill consequences of alcohol consumption. Before the definitive decision prospective randomized blinded trials would be important: engage a large pool of non-drinkers, half of whom would commence a moderate drinking regimen, whilst the other half remained abstainers.

The two groups would be followed for years in a search for eventual differences in cardiovascular disease and heart-related deaths. First possible data were available in 2008. King et al observed that of 7697 participants who had no history of cardiovascular disease and were non-drinkers at baseline 6.0% began moderate alcohol consumption and 0.4% began heavier drinking.

After 4 years, new moderate drinkers had a 38% lower chance of developing CVD than did their persistently nondrinking counterparts. Those who began drinking moderately experience a relatively prompt benefit of lower rate of CVD morbidity with no change in mortality rates after 4 years. The collected data make a strong case of the cardiac benefit of controlled drinking.’3

Thank you and cheers. Not that I expect I will have convinced anyone who objected to my last article.


1: http://www.bmj.com/content/356/bmj.j909

2: https://www.ncbi.nlm.nih.gov/pubmed/26992108

3: Ginter E, Simko V. ‘Ethanol and cardiovascular disease: epidemiological biochemical and clinical aspects.’ Bratisl Lek Listy 2008: 109(12) 590-4

What causes heart disease – part XXIX


Many moons ago when I wrote The Great Cholesterol Con I provided a very short section at the end on what people should do, to avoid heart disease. It went something like this:

1: Do not smoke cigarettes (to which I would now add  – or anything else).

2: Take exercise – that you enjoy. Don’t try to drive yourself into the ground. Walking outside is particularly good, especially on a sunny day.

3: If you don’t drink alcohol, start. If you do drink, drink regularly – don’t binge drink – and make sure that you enjoy what you drink. Drink with friends, drink sociably, don’t drink to get drunk.

4: If you hate your job, get another one – don’t feel trapped.

5: Make a new friend, join a club, find an area of life that you enjoy. Praise other people and try to compliment other people more often.

6: Look forward to something enjoyable every day, every month, and longer term.

Not a very long list I admit, and even at the time I was aware that there were other things that could be done. However, I was reluctant to write yet another ‘ten ways to stop heart disease completely – forever (money back if you die)’ type of book. My sister was critical of my ‘advice free’ book. ‘People want to be told what to do.’was her terse comment. She is good at terse.

My view was that advice should be accepted by the bucketful, but only given out by the thimbleful. People need, I replied with the utmost pomposity, to make their own decisions about what to do with their lives, and not keep looking for some fluffed up latter day prophet to guide them. Not giving direct advice has the added advantage that you won’t get sued, or lose your license to practice medicine. Or at least, it makes it far less likely.

However, in my long and winding series on what causes heart disease I have popped in a few bits of advice along the way. In this particular blog, I am returning to my Great Cholesterol Con advice on alcohol. Whilst writing that book I had noticed, and have continued to notice, that moderate alcohol consumption is associated with a lower risk of dying of cardiovascular disease (CVD). Also, that non-drinkers generally have the shortest life expectancy. In short, if you don’t drink, start drinking.

The rest of the medical profession absolutely hates this message. At heart, you see, most of them are secret puritans. The idea that doing something enjoyable, might also be good for you, is just too much to bear.

“Puritanism: The haunting fear that someone, somewhere, may be happy.” H.L. Mencken

Which means that the medical profession have done their best to attack any evidence that alcohol may be good for you. The most common argument used to dismiss the fact that non-drinkers have the shortest life expectancy, is that they have some underlying illness that stops them drinking. It is the underlying illness that then causes them to die, and not the fact that they do not drink.

There are ongoing debates about the role of combining different types of current non-drinkers in producing this apparent protective effect (of moderate drinking). Specifically, former or occasional drinkers might have reduced or ceased drinking because of ill health, making the aggregated non-drinking group artificially seem to have a higher risk of cardiovascular disease and mortality.’1

Or maybe not.

You may recognise the exact same argument used on cholesterol levels. In general, those with the lowest cholesterol levels also have the shortest lifespan. A phenomenon noted in almost all long-term studies. This, we are told, is absolutely and certainly NOT because a low cholesterol level is harmful. It is because an underlying illness lowers cholesterol levels and it is the underlying illness that kills people– not the low cholesterol levels themselves. Good try (no evidence).

The irony, of course, is that this would seem to be the perfect illustration of the fact that a low cholesterol level is caused by ill health, and not a sign of good health. Or to put this another way, if a low cholesterol level is caused by an underlying illness, that kills you, then a low cholesterol level can hardly be considered something to be striven for. Can it? (See under PSCK-9 inhibitors increasing overall mortality.)

At present our glorious cardiovascular experts are happy to inform us, in all seriousness, that a low cholesterol level can be both a sign of underlying illness, and a cause of good cardiovascular health.  Or, to put it another way, the cholesterol level can be both an effect of illness and a cause of illness. That’s the problem with logic. Misuse it, and it will come around and bite you on the bum.

Anyway, returning to alcohol. Is there any evidence that people who do not drink, do so because they are suffering from an underlying illness? No, there is not. Or, if there is I have never seen it. It is just a meme which, because it fits with firmly held underlying prejudices, has become accepted as a fact.

Actually, when it comes to prejudices, my own is that alcohol – as a chemical – is not protective against CVD. It is protective because in the various forms that humans drink it, it is relaxing, reduces stress/strain, and when it is drunk in company it is part of a lifestyle that is protective. In short, if you are looking for CVD protection, you would be best not to stir sixteen grams of pure alcohol into a beaker containing two hundred mls of water, then consume every morning before breakfast. [Two units].

Far better to uncork a bottle of red wine, (white wine, what is all that about?) thirty minutes before a nice home cooked meal. Then pour it lovingly into a glass, swirl it around a bit, then enjoy. If you can also do this outside, looking over a sapphire blue bay, with boats bobbing in a light breeze, so much the better. [This was never really an option whilst growing up in Scotland.]

In short, I do not believe drinking alcohol is a true ‘drug’ effect. The lifestyle around drinking has a major part to play. However, I may be wrong. Researchers have studied the effects of different types of drink on factors that I consider key for CVD. Endothelial function, and blood clotting factors. It seems that red wine, and beer are the most beneficial.

Here, from a paper entitled: ‘Acute effects of different alcoholic beverages on vascular endothelium, inflammatory markers and thrombosis fibrinolysis system.’


‘Acute consumption of red wine or beer improves endothelial function and decreases vWF levels, suggesting that the type of beverage may differently affect endothelial function and thrombosis/fibrinolysis system in healthy adults.’2

vWF is von Willibrand Factor, something I have written about in the past. Research has demonstrated that people with low vWF levels are up to 60% less likely to die from CVD. vWF tends to make platelets sticky and more likely to cause blood clots. Alcohol consumption also considerably reduces fibrinogen levels, a key clotting factor, at all levels of drinking.

However, if you drink a great deal, the effects can reverse. You also get a sharp rebound in some clotting factors. Heavy drinking appears to increase tissue factor (THE key clotting factor), factor VII, and other pro-clotting factors such as plasminogen activator inhibitor 1 (PAI-1). 3

Clearly, therefore, there does seem to be a ‘therapeutic window’ for alcohol consumption. An amount of drinking where the benefits are greater than the potential harms. Actually, I hate writing the words ‘therapeutic window’ alongside ‘alcohol consumption’. To me, this turns the act of drinking alcohol into a dull and joyless disease prevention activity

Viewing alcohol as some form of drug completely misses the point that there is, I strongly believe, ‘happy’ drinking and ‘unhappy’ drinking. How you drink, is a least as important as how much. I make this point with great confidence despite having no evidence at all to support the statement.

However, if you want to treat drinking alcohol as something like taking a vitamin tablet, or a daily aspirin, then I suppose you can. And good luck with that. You would be like a relative of mine who had been persuaded that drinking red wine was particularly heart healthy. He drank one point five, standard, glasses of red wine every evening with his meal.  Not a drop more, not a drop less.

I have no idea if he enjoyed the red wine or not. He was not the sort of man to share that sort of information. He was more of a ‘life is to be endured, not enjoyed’, sort of a man. Still, with his meticulous wine drinking regimen, he remained alive for twenty-five years after a massive, nearly fatal heart attack. So, maybe he was right – and I am wrong.

Anyway, the main reason for writing this blog is that, just before I went on holiday, I noticed that there had been a massive study done on the effect of drinking alcohol on CVD, published in BMJ open. It had the snappy title:

‘Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: population based cohort study using linked health records.’4

Ah, the poetry, the emotional power of it all. Why do researchers feel they must use such emotionally crippled language, the dreaded passive voice? Of course, I know the reason, they won’t get published if they dare use an active verb, or a personal pronoun. ‘I did this.’ Is not a phrase you will ever see in a research paper. More’s the pity. Language and emotion are closely linked, but attempting to use only the most stripped out passive language does not add scientific accuracy, it just makes it very, very, very, dull to read.

Back to the paper itself. It was, of course, observational. However, it was very big. They looked at 1,937, 360 people. And there were 114,859 cardiovascular events, of various sorts. From heart attacks, to strokes, to a first heart failure diagnosis. It also included something that I have not really come across before ‘unheralded coronary death.’ Which means, I presume, dropping dead of a heart attack without any prior diagnosis of heart disease, or any kind.

The results that I was most interested in were the following. The comparison between non-drinkers and moderate drinkers.

Non-drinking was associated with

  • 33% increased risk of unstable angina
  • 32% increased risk of myocardial infarction (heart attack)
  • 56% increased risk of unheralded coronary death
  • 24% increase risk of heart failure
  • 12% increased risk of ischaemic stroke
  • 22% increased risk of peripheral arterial disease
  • 32% increased risk of abdominal aortic aneurysm

Interestingly, these increased risks were very similar in heavy drinkers: Heavy drinking (exceeding guidelines) was associated with

  • 21% increased risk of unheralded coronary death
  • 22% increased risk of heart failure
  • 50% increased risk of cardiac arrest
  • 11% increased risk of transient ischaemic attack
  • 33% increased risk of ischaemic stroke (intracerebral
  • 37% increased risk of cerebral haemorrhage
  • 35% increased risk of peripheral arterial disease
  • 12% lower risk of myocardial infarction
  • 7% lower risk of stable angina

Which reinforces the fact that there is a level of drinking that is beneficial which lies somewhere between non-drinking and heavy drinking. It is called moderate, but it is very difficult to know what this means. I would guess between one and four units a day.

At what point does ‘heavy drinking’ start. Again, this is difficult to say, as researchers tend to clump anyone who drinks more than ‘moderately’ into the group of heavy drinking. This is a game that I call statistical clumping.

By which I mean, we have (for example) four groups. Non-drinkers, occasional drinkers (one or two drinks a week), moderate drinkers (one or two units a day), then heavy drinkers. ‘Heavy drinkers’ as a group, contains all those who drink more than two units a day. In effect, you are ‘clumping’ together those who drink more than two units a day with those who drink two bottles of gin a day. This kind of skews your figures and makes it impossible to know when beneficial drinking stops and damaging drinking starts. [The same game is played with obesity].

So, where are we? Adjusting left right and centre for all confounders, we are left with a simple fact. If you drink alcohol in moderation (with all the provisos attached to that statement), you will significantly reduce your risk of developing, and dying, or CVD.

So, I stand by my statement made in The Great Cholesterol Con. If you don’t drink alcohol, start. Did the authors of the study recommend that non-drinkers start dinking? Of course not. They would never dare. Here is as close as they got.

‘Similarly, while we found that moderate drinkers were less likely to initially present with several cardiovascular diseases than non-drinkers, it could be argued that it would be unwise to encourage individuals to take up drinking as a means of lowering their risk (although it must be noted that the findings from this study do not directly support this as we did not consider transitions from non-drinking to drinking).

This is because there are arguably safer and more effective ways of reducing cardiovascular risk, such as increasing physical activity and smoking cessation.’

Well, I would agree that stopping smoking and exercise would be more effective than starting drinking. However, the statement is still ridiculous. What of those who do not smoke, and who do take exercise. What of those who will not stop smoking and will never takes exercise. Should they still not drink alcohol, and thus fail to gain the obvious benefits?

The other statement is equally ridiculous…. ‘We did not consider transitions from non-drinking to drinking.’ So, we know that moderate drinking is beneficial. We know that not drinking increases risk. But we don’t know that if you start drinking, this will be beneficial.

I shall state this in a different way. ‘We did a placebo controlled study where we saw that those taking the drug gained benefit. However, we did not start giving those on the placebo the active drug, so we do not know if moving from taking placebo to the active drug would be beneficial.’ Using this logic, no clinical study ever done has ever proven anything. Sigh. Where is the God of logic when you need him – or indeed her.

In the end, I have this to say about alcohol. Moderate drinking (whatever that may be) is not harmful. It is probably beneficial. My own view is that alcohol consumption is tightly wrapped within healthy lifestyles to do with sociability friendship and suchlike, and that the amount of alcohol is only a part of the story. However, if you want to drink a couple of glasses of red wine in the evening – go for it.

1: http://dx.doi.org/10.1136/bmj.j909

2: https://www.ncbi.nlm.nih.gov/pubmed/18295937

3: https://www.ncbi.nlm.nih.gov/pubmed/9607117

4: http://www.bmj.com/content/356/bmj.j909

Cholesterol lowering – proven or not?


Just before I head off on holiday for a couple of weeks, I thought I should make a quick comment on the Repatha trial (PCSK9- inhibitor). I have written much about this new class of cholesterol lowering drugs, and I have been highly skeptical that they would have any benefits on cardiovascular disease. [Mainly on the basis that I don’t believe raised LDL causes CVD, and these drugs have one action – to lower LDL].

As many of you will be aware, the data from a clinical trial on Repatha has just been released. It was reported by the BBC thus

‘Huge advance’ in fighting world’s biggest killer.’

An innovative new drug can prevent heart attacks and strokes by cutting bad cholesterol to unprecedented levels, say doctors. The results of the large international trial on 27,000 patients means the drug could soon be used by millions.

The British Heart Foundation said the findings were a significant advance in fighting the biggest killer in the world. Around 15 million people die each year from heart attacks or stroke. Bad cholesterol is the villain in the heart world – it leads to blood vessels furring up, becoming easy to block which fatally starves the heart or brain of oxygen.

It is why millions of people take drugs called statins to reduce the amount of bad cholesterol . The new drug – evolocumab – changes the way the liver works to also cut bad cholesterol. “It is much more effective than statins,” said Prof Peter Sever, from Imperial College London.

He organised the bit of the trial taking place in the UK with funding from the drug company Amgen. Prof Sever told the BBC News website: “The end result was cholesterol levels came down and down and down and we’ve seen cholesterol levels lower than we have ever seen before in the practice of medicine.”

And so on, and so forth. So, the Repatha trial was a huge success. Obviously, it certainly lowered LDL to levels never seen before. Or, maybe it was not quite such a huge success. Michel de Logeril, a professor of cardiology in France – who set up and ran the famous, and successful, Lyon Heart Study sent me this comment.

‘This is just junk science.

The calculated follow-up duration required to test the primary hypothesis was 4 years as written by the authors themselves (but only in the second last paragraph before the end of discussion…) but the actual median duration of follow-up has been 2.2 years; it is thus a biased trial (a similar bias as in JUPITER: 1.9 years instead of 4 years): early stop!

In addition, contrary to the misleading claims in the medias, there was no effect on both total [444 deaths with evolocumab vs. 426 with placebo] and cardiovascular [251 vs. 240] mortality; which is not unexpected with a so short a follow-up.

They pretend that they are differences for non-fatal AMI and stroke but there is no difference in AMI and stroke mortality… Very strange… It would be critical to get access to the raw clinical data to verify the clinical history of each case in both groups.

Well, in my opinion and given the present state of consciousness among US doctors, FOURIER is a flop!



What he is saying, is that there was a reported reduction in non-fatal heart attacks and stroke. And less need for revascularization procedures e.g. PCI/stents. As you may gather Professor de Logeril would like to see the raw data to verify this. There is very little chance that this will be made available.

Anyway, that was the upside.

The downside is when you look at cardiovascular deaths.

  • The total number of deaths from cardiovascular disease in the Repatha group was 251
  • The total number of deaths from cardiovascular disease in the placebo group was 240
  • So, 11 more people died of cardiovascular disease in the Repatha group

The overall mortality data

  • The total number of, overall, deaths in the Repatha group was 444
  • The total number of, overall, deaths in the placebo group was 426
  • So, there were 18 more deaths in those taking Repatha.

The differences here are not large enough to be statistically significant. However, there were more, not less, deaths in the Repatha group, and more, not less, CV deaths. This study was also terminated early, which is extremely bad news for any clinical trial, and casts enormous doubt on any findings. It was supposed to last four years, but was stopped at 2.2 years. Why? Were the mortality curves heading rapidly in the wrong direction.

Alongside this, should be set the knowledge the Pfizer also had a PCSK9-inhibitor undergoing clinical trials, and they pulled the plug, right in the middle of it all.

Pfizer Ends Development Of Its PCSK9 Inhibitor

‘November 1, 2016 by Larry Husten

Immune issues and diminishing efficacy doomed the new drug.

Pfizer announced on Tuesday that it was discontinuing development of bococizumab, its cholesterol-lowering PCSK9 inhibitor under development.

“The totality of clinical information now available for bococizumab, taken together with the evolving treatment and market landscape for lipid-lowering agents, indicates that bococizumab is not likely to provide value to patients, physicians, or shareholders,” the company explained.

Pfizer said that it would halt two very large ongoing cardiovascular outcome studies with bococizumab, the 17,000 patient SPIRE 1 trial and the 10,000 patient SPIRE 2 trial. The trials were fully enrolled.’

Pulling the plug when 27,000 patients had been fully enrolled. What on earth did they see. Something more than slightly worrying. I guess we will never really know, but that is one hell of a write off.

It is also interesting to note that Amgen – the company selling Repatha, has announced that:

‘Amgen to refund cholesterol drug if patients suffer heart attack

Pledge aims to convince insurers to pay for $14,000-a-year medicine.2

As reported in the Financial Times.

This is a big vote of confidence … not! I think, perhaps, we are looking at a doomed drug. Probably a doomed class of drugs. Has the cholesterol hypothesis been verified, or contradicted? I know I am biased, but I know what I think.

1: http://cardiobrief.org/2016/11/01/pfizers-ends-development-of-its-pcsk9-inhibitor/

2: https://www.ft.com/content/34154cdc-0a86-11e7-ac5a-903b21361b43

What causes heart disease part XVIII


For those who have read my endless series of blogs on cardiovascular disease, you may know exactly where I am going at this point.

Some time ago, Pfizer were developing a drug to treat angina. It blocked an enzyme called phosphodiesterase type-5. [Although I believe that its exact mechanism of action was not known at first]. To put it another way, this drug was a phosphodiesterase type-5 inhibitor (PDE5i).

The moment Pfizer found out what enzyme this drug blocked, they tried to patent the pathway that blocked this enzyme. Pharmaceutical companies trying to patent biological pathways. Perhaps I should try to patent the Krebs cycle, and charge everyone on the planet for having such a thing. Kerchingggg!

‘The U.S. patent office appears to have granted Pfizer a patent covering any drug that blocks this enzyme, meaning that it can sue all of its potential competitors.’1

Luckily, this time they were rebuffed.

Anyhoo, back to the drug. During phase one clinical trials, where humans are given the drug for the first time to see what effects it may have, many of the volunteers were hanging on to their medication, rather than handing them back. This was very unusual. Almost unknown in fact.

When researchers went out to find out why this was happening it was discovered, not quite sure who admitted to this, that sildenafil/Viagra improved erectile function. Thus, Viagra, the first PDE5i, was born. The first drug that worked simply and effectively to improve erectile dysfunction (ED). As for treating angina… that piffling indication was rapidly shelved as the dollar signs appeared in the sky above Pfizer HQ. Sex, as they say, sells.

In truth, it is actually one of the best drugs ever. Not only does is treat ED, but it can also be used by mountaineers to prevent pulmonary oedema (fluid filling up in the lungs), which is one of the major symptoms of altitude sickness. It does this by reducing the blood pressure in the pulmonary vessels (blood vessels in the lungs).

To explain a little further. If you climb very high, and the oxygen level drops, the heart pumps blood harder and harder through the lungs to get as much oxygen as possible into the system. This can result in fluid leaking out of the vessels and into the lung tissue, so they fill up with fluid. At which point you effectively drown, so you die. Viagra stops this happening, by lowering the blood pressure in the lungs.

Unsurprisingly, Viagra is used to treat people who have pulmonary hypertension (high blood pressure in the blood vessels in the lungs) at sea level. It is sold under the name Ravatio, for this indication – but we know that it is just Viagra. In addition, Viagra can be used to treat Raynaud’s disease, where the small blood vessels supplying the fingers and toes constrict, leading to painful cold fingers.

So, here we have a drug that can treat angina, pulmonary hypertension, erectile dysfunction and Raynaud’s disease at the same time. Thus, you can have great sex at twenty thousand feet above sea level, not get chest pain, or breathless, and stay warm at the same time. What more could a man ask for?

How does it do all these things? The answer is that it increases Nitric Oxide (NO) synthesis in endothelial cells. When it does this in the penis, it stimulates erections. In the heart, it opens up coronary arteries. In the lungs, it dilates the blood vessels, in fingers and toes it opens up arteries. So, all of the many different effects, are all due to exactly the same process – increased NO synthesis. Viagra also lowers blood pressure – as you would expect.

At the risk of blowing my own trumpet, I talked about this in my book ‘Doctoring Data,’ under the heading ‘Viagra and the drugs of unintended consequences.’ I posed the question. ‘If we were to prescribe Viagra as an antihypertensive, which is entirely possible, and it were found to reduce the risk of heart disease and stroke, which effect do you think would be responsible for the benefit? The blood pressure lowering effect, or the anticoagulant effects? Or something else.

Since I wrote those words, someone has actually looked at the impact of PDE5is on cardiovascular disease. Researchers at Manchester University, in the UK, studied the use of Viagra in people with diabetes – who often have erectile dysfunction. Here is what they found:

‘Viagra could prevent heart attacks, according to research. Patients taking the male impotence drug were found to have a lower risk of having a heart attack or dying from heart failure than those not on the medication. The lead scientist told the Daily Express the findings are “incredibly exciting”.2

The research paper was published in ‘Heart’, a BMJ journal. Actually, this paper was published last year, but only seems to have hit the press in the last few days. I spotted it in the Times a few days ago.

Here are the main results (for those readers who like their statistics)

‘Results: Compared with non-users, men who are prescribed PDE5is (Viagra, Cialis and the likemy words) (n=1359) experienced lower percentage of deaths during follow-up (19.1% vs 23.8%) and lower risk of all-cause mortality (unadjusted HR=0.69 (95% CI: 0.64 to 0.79); p<0.001)). The reduction in risk of mortality (HR=0.54 (0.36 to 0.80); p=0.002) remained after adjusting for age, estimated glomerular filtration rate, smoking status, prior cerebrovascular accident (CVA) hypertension, prior myocardial infarction (MI), systolic blood pressure, use of statin, metformin, aspirin and β-blocker medication. PDE5i users had lower rates of incident MI (incidence rate ratio (0.62 (0.49 to 0.80), p<0.0001) with lower mortality (25.7% vs 40.1% deaths; age-adjusted HR=0.60 (0.54 to 0.69); p=0.001) compared with non-users within this subgroup.’3

For those who don’t like their statistics quite as much as me (shame on you). I shall attempt to simplify.

  • Over a seven year period, those men taking PDE5is (Viagra Cialis and the like) had a 4.7% reduction in overall mortality – compared to men who did not.
  • Those taking Viagra were 38% less likely to have a myocardial infarction
  • If you did have a myocardial infarction, those who were taking PDE5is had a 25.7% death rate. Those who were not taking PDE5is had a 40.1% death rate. So, if you were unfortunate to have a heart attack, you were 14.6% less likely (absolute risk reduction) to die if you were taking PDE5is.

Or, to shorten this even more

  • 4.7% reduction in overall mortality
  • 38% reduction in MI (relative risk reduction)
  • 14.6% reduction in death after an MI

Whilst the first figure of a 4.7% reduction in overall mortality may not sound terrible exciting, it knocks all antihypertensives and cholesterol lowering medication into a cocked hat. Even if you add them together and multiply by two – on their best day. Because 4.7% is an absolute risk reduction. [Absolute mortality reduction in the Heart Protection Study (HPS), the most positive statin trial, was 1.8% over five years]

The benefits of Viagra are even more startling when it comes to having a heart attack (MI). The current ‘gold standard’ treatment of choice is Primary Percutaneous Coronary Intervention (PCI), which basically means popping a stent into a blocked coronary artery to open it up again.

It has been estimated that PCI results in a 2% absolute reduction in mortality4. On the other hand, Viagra gives you, very nearly, a 15% reduction in overall mortality. Or, to put it another way, Viagra may be seven and a half times as effective as PCI.

But it does not end here. it was also found that men with heart failure were 36% less likely to die if they took a PDE5i.

‘In the other subgroups, there was an inverse association between PDE5i use and all-cause mortality. Those with a recorded history of congestive cardiac failure, TIA and PVD had 36%, 40% and 34% lower risk, respectively.’ [A TIA is a transient Ischaemic attack/small stroke. PVD is peripheral vessel disease.]

Congestive cardiac failure is usually shortened to heart failure. [This 36% is a relative risk reduction, and I could not work out what the absolute risk was from the paper. I am probably too thick].

The effect on heart failure is almost certainly because another benefit of increasing NO is that you increase ‘angiogenesis’, otherwise known as, ‘the creation of new blood vessels’. If a coronary artery does completely block, this often leads to heart failure, as not enough oxygen and other nutrients can get into the heart muscle downstream.

However, if collateral blood vessels develop, the blood will be directed around the blockage and back into the artery downstream, through these newly created blood vessels. Although collateral circulation is not as effective as a fully patent coronary artery, it will create a significant flow of oxygen and nutrients once more. Thus, heart failure will be greatly improved.

Louis Ignarro, who identified nitric oxide (NO) as the key chemical messenger that dilated blood vessels, and won the Nobel Prize for doing so, decided to start treating people who have end stage heart failure with l-arginine. He had been looking for a substance that would, naturally increase NO, and found l-arginine did the job best. He has had some amazing results. Perhaps he should start using Viagra instead.

This study, I must add, was not interventional, it was observational. However, it strongly supports the hypothesis that increasing NO synthesis is just about the most important thing you can do. If you want to avoid dying from CVD.

Do I think everyone should take Viagra? Well, if you have heart failure, diabetes and a high risk of CVD – probably. Will you get a doctor to prescribe it for you, for CVD prevention? Absolutely no chance. Will anyone ever fund a study on this? With the drugs now off patent – no chance.

Oh, the joys of modern medicine. Unless someone does a controlled randomised double blind study on a medication, doctors will not prescribe – are not allowed to prescribe. However, virtually the only people with the money to do such studies are pharmaceutical companies. If the patent life of a drug has expired, no money can be made. So, no trial will be done. So, drugs that are almost certainly beneficial wither on the vine.

Unusually, for me, I do not blame the pharmaceutical companies for this. They are not charities. They need to make money or they die. You cannot expect them to spend hundreds of millions on a clinical study, without any possible means of gaining a return on their investment. We live in a funny old world.

In the meantime, look to other things that can increase NO synthesis. L-arginine/L-citrulline does this. Potassium does this. Sunlight does this. Exercise does this. Meditation does this. Vitamin D does this, as does Vitamin C. What are you waiting for? Go for a walk in the sun and eat an orange – you will live forever.


1: https://www.forbes.com/2002/10/23/cx_mh_1023pfizer.html

2: http://www.independent.co.uk/life-style/health-and-families/health-news/viagra-could-lower-heart-attack-risk-and-risk-of-dying-from-heart-failure-a7082801.html

3: http://heart.bmj.com/content/early/2016/07/26/heartjnl-2015-309223.full

4: https://www.ncbi.nlm.nih.gov/pubmed/12517460?access_num=12517460&link_type=MED&dopt=Abstract

What causes heart disease part XXVII

Lumen: The lumen of the artery is the hole in the middle that the blood flows through.

The artery wall: The artery wall is made up of three layers: Endothelium/intima, media and adventitia

The endothelium: Usually thought of as a single layer of endothelial cells than line the lumen of the artery. [The layer may be more than one cell thick]. This layer of endothelium acts as a barrier to blood, or anything in the blood, leaking from the lumen into the artery wall. There is a bit of space, sometime called the intima just under the endothelial cells.

The media: This layer is mostly made up smooth muscle cells and elastic tissue. The muscle can contract or relax, depending on circumstances

The adventitia: This outermost layer is mainly made up of collagen. It is very strong and keeps the artery in shape.

The atherosclerotic plaque: The areas of thickening and narrowing of arteries (in heart disease). These are usually found between the endothelium and the media – smooth muscle layer. They lie beneath the endothelium – within the artery wall itself. The area often referred to as the intimal layer of the artery.

The elevator pitch

Various people who work in business tell me of something called the ‘elevator sales pitch’. So-called, because of a (highly unlikely) situation whereby you find yourself in an elevator (which we in the UK call a lift) with a rich, famous, person. You have a short space of time to outline your idea to them, what it is, what it means, and why it is of value. They then hand over a hundred million dollars to invest in you, and your idea. Or something like that anyway.

Whilst the elevator pitch is clearly a mythical beast, the general point is reasonable. You should be able – or you should at least attempt – to condense your ideas into a very short space of time, before people get bored and walk away. Well, clearly I have miserably failed on this, as I am now writing part twenty-seven of my idea(s) on heart disease. In truth, I am planning on the elevator breaking down for about ten hours between floors to give me the time needed.

Recently, though, I have been speaking to a number of people who have successful careers in business, music, the arts and suchlike. I have been trying out my elevator pitch on them. Admittedly the elevator I am thinking of is in the Burj Khalifa in Dubai, but I am trying. So, here goes. Doors close on the elevator. Me and Bill Gates…

Me. ‘Forget diet, forget cholesterol, the real cause of heart disease is blood clotting.’

Bill Gates looks at his watch. ‘You have one minute.’

Me. ‘Blood clots can form and stick to the inside of artery walls. They then get absorbed into the artery wall itself where, normally, they are cleared away by specialised white blood cells. But if blood clots keep forming rapidly, at the same point, or the blood clots are bigger and more difficult to shift when they form, they cannot be cleared away quickly enough and so end up stuck inside the artery wall. This leads to a build-up of blood clot residue, and remnants, in the artery wall itself. Which means that repeated episodes of clotting, over time, build into thickenings, and narrow the larger arteries, mainly in the heart and the neck, growing somewhat like tree rings. These areas of damage are usually called atherosclerotic plaques.

In time, the process of blood clotting, over a vulnerable area, leads to heart attacks and strokes as the final, fatal blood clot forms over an area of the artery that is already thickened and narrowed. In short, atherosclerotic plaques are the remnants of blood clots. Heart attacks and strokes are the end result of the same processes that caused plaques to form in the first place. Heart disease is a disease of abnormal blood clotting. It is as simple as that. The end.’

Ping. Elevator door opens and Bill Gates walks out.

Do you think he believed me? Of course not. Heart disease is caused by cholesterol, end of.

Bill Gates: ‘Who was that complete idiot in the lift, make sure he never gets the chance to speak to me again.

Man in black suit: ‘OK boss.’

I should point out that I have never spoken to Bill Gates, and almost certainly never will. I merely used his name as an example of someone that you might try to convince using an elevator sales pitch.

I also know that my sales pitch will just seem like the most complete nonsense to most people. How can I possibly claim that atherosclerotic plaques are blood clots, when no-one else in the entire world is saying it? Am I not simply a flat-Earther? Indeed, am I not a lonely flat-Earther baying at the moon. At least the moon currently passing overheard, to join all the other moons that clearly fall into a big basket on the other side of the Earth – to be returned from time to time by an enormous dung beetle.

I like to think not, because the ‘blood clotting’ hypothesis fits all known facts about cardiovascular disease. In fact, many people have proposed the ‘blood clotting theory’ of CVD over, what is now, hundreds of years. From Rokitansky to Duguid to Smith – and many more. Here, from a paper written in 1993 called ‘Fibrin as a factor in Atherosclerosis’, co-authored by Elspeth Smith.

[Just to first remind everyone that Fibrin is a critical element of blood clots (along with platelets). Fibrin is made up of short strings of a protein called fibrinogen. When the clotting system (clotting cascade) is activated, the end result is that fibrinogen is stuck together end to end, in order to create long sticky strands of fibrin that entangle themselves around the clot and bind it all together.]

After many years of neglect, the role of thrombosis in myocardial infarction is being reassessed. It is increasingly clear that all aspects of the haemostatic system are involved: not only in the acute occlusive event, but also in all stages of atherosclerotic plaque development from the initiation of atherogenesis to the expansion and growth of large plaques.

Infusion of recombinant tissue plasminogen activator (rt-PA) into healthy men with no evidence of thrombotic events or predisposing conditions elicited significant production of crosslinked fibrin fragment D-dimer. Thus, in apparently healthy human subjects there appears to be a significant amount of fibrin deposited within arteries, and this should give pause for thought about the possible relationship between clotting and atherosclerosis.

It also provides in vivo biochemical support for the numerous morphological studies in which mural fibrin and microthrombi have been observed adherent to both apparently normal intima and atherosclerotic lesions. It should be noted that these observations are based on the human and not just the animal model.

In 1852 Rokitansky discussed the “atheromatous process” (sic) and asked “In what consists the nature of the disease?” He suggests “The deposit is an endogenous product derived from the blood, and for the most part from the fibrin of the arterial blood”.

One hundred years later Duguid demonstrated fibrin within, and fibrin encrustation on fibrous plaques, and small fibrin deposits on the intima of apparently normal arteries. These observations have been amply confirmed but, regrettably, the emphasis on cholesterol and lipoproteins was so overwhelming that it was another 40 years before Duguid’s observations had a significant influence on epidemiological or intervention studies of haemostatic factors in coronary heart disease.

Unfortunately, since that paper was written the emphasis on cholesterol and lipoproteins has become even more overwhelming, and research into blood clotting and atherosclerosis has faded to almost nothing. It appears that the vast sums of money to be made from cholesterol lowering has completely distorted research into this area. All the funding, and all the international experts, have charged into the blind-alleyway that is the cholesterol hypothesis.

In a kind of supreme irony, in 1992 Pfizer were also travelling down the blood clotting route. I have (mentioned before) possibly the only remaining copy of a small booklet entitled ‘Pathologic Triggers New Insights into cardiovascular risk.’ And I quote:

‘Several features of mature plaques, such as their multi-layered patterns, suggests that platelet aggregation and thrombus formation are key elements in the progression of atherosclerosis. Platelets are also known to provide a rich source of growth factors, which can stimulate plaque development.

Given the insidious nature of atherosclerosis, it is vital to consider the role of platelets and thrombosis in the process, and the serious events that may be triggered once plaque are already present.’

Of course, this leaflet was promotional, for their product doxazosin. Doxazosin lowers blood pressure and also has effects on urinary retention. However, in this leaflet, they were trying to promote its effects on blood clotting factors. Basically, doxazosin reduces fibrinogen levels and plasminogen activator inhibitor – 1 (PAI-1). Plasminogen is activated by tissue plasminogen activator (tPA) which then becomes plasmin, an enzyme that slices fibrin apart, and breaks down blood clots. PAI-1 stops this happening, so makes clots more difficult to break down.

To quote, again.

‘These recent studies suggest that doxazosin may have a range of significant antithrombotic effects in many patients, in addition to its proven beneficial effects on hypertension and hyperlipidaemia. Following doxazosin treatment, a reduction of platelet aggregation and a tendency towards dissociation, together with a reduction in fibrinogen levels, might prevent excessive degrees of thrombosis at the site of vascular injury. In addition, reduced levels of PAI-1, and increased tPA capacity with doxazosin might stimulate fibrinolysis and early clot dissolution at these sites, and prevent the evolution of an acute coronary event.’

So there, couldn’t have put it better myself.

Then Pfizer bought Warner-Lambert, who made atorvastatin/Lipitor. The focus became Lipitor and lipids, lipids, lipids. Lo it came to pass that Pfizer never mentioned blood clotting ever again, lest it interfere with the LDL story. Pity really, because mighty Pfizer got it right in 1992. Smith got it right in 1993, Duguid got it right in the 1940s, and Rokitansky was right in 1852. Of course, there have been many others who got it right too. Many, sadly, lost to history.

At some point this, the blood clotting hypothesis, the correct hypothesis will win. Maybe that time will be now.


I realise some people may still wonder (if they have not read what I have written before) how the blood clot ends up within the artery wall/beneath the endothelium.

The reason is as follows. If the endothelium is damaged, a clot will form, sitting on the inside of the arterial wall. Once the clot has stabilised, and been reduced in size by fibrinolysis, the remainder of the clot will be covered over by Endothelial Progenitor Cells (EPCs) that float around in the bloodstream and are attracted to areas of endothelial damage.

After a layer of EPCs has grown over the clot, and converted themselves into mature endothelial cells the blood clot will now, effectively, be sitting inside the artery wall. Underneath a new layer of endothelium. Thus, clot becomes plaque.

http://circ.ahajournals.org/content /92/5/1355.full

What causes heart disease part XXVI

[Hold the front page]

Last night I watched a you tube presentation which completely astonished me. It was given by Professor Salim Yusuf, who is as mainstream as mainstream can possibly be. Here, from Wikipedia:

‘Salim Yusuf (born November 26, 1952) is an Indian-born Canadian physician, the Marion W. Burke Chair in Cardiovascular Disease at McMaster University Medical School and currently the President of the World Heart Federation, a world-renowned cardiologist and epidemiologist. In 2001, he published a landmark study that proved the benefits of clopidogrel in acute coronary syndrome without ST elevation.

Here, from Forbes magazine in 2012:

‘McMaster University’s Salim Yusuf has tied for second place in the annual ranking of the “hottest” scientific researchers, according to Thomson Reuter’s Science Watch. Yusuf was a co-author of 13 of the most cited papers in 2011. Only one other researcher, genomic pioneer Eric Lander of the Broad Institute of MIT, had more highly-cited papers than Yusuf.’1

On February the 12th he gave a presentation at a cardiology conference in Davos, Switzerland which can be seen on YouTube. In this presentation, he makes the following points:

  1. Saturated fat does raise LDL, a bit, but has no effect on CVD – maybe slightly beneficial. Monounsaturated fats are slightly beneficial. Polyunsaturated fats are neutral.
  2. Carbohydrate intake is most closely associated with CVD
  3. Fruit and vegetable intake has little or no impact on CVD – nor does fish intake [He wonders where the five portions of fruit and vegetable intake recommendations actually came from]. Vegetables in particular have no benefit.
  4. Legumes – beans and suchlike – are beneficial.
  5. The recommendations on salt intake are completely wrong, and set far too low. For those who do not have high blood pressure, low salt intake increase mortality. On the other hand, high salt intake does no harm.
  6. He recommends higher potassium intake.
  7. He criticizes Ancel Keys and lauds Nina Teicholz [Author of big fat surprise].

Well, good for him. It seems to have taken him a long time to get there, but he did in the end. Of course, mainstream medicine will remain in shocked silence, so you will likely hear nothing of this in the mainstream media. But, hey, you get to see it here. Perhaps someone would like to send this presentation to the BHF and the AHA and ask them for a comment?

The YouTube presentation is here:


1: http://www.forbes.com/sites/larryhusten/2012/04/25/when-youre-hot-youre-hot-salim-yusuf-second-most-influential-scientist-in-2011/#6ac825575abe